
A List of Haskell Articles on good design,
good testing

William Yao
Matt Parsons

David Luposchainsky
Alexis King

Jasper Van der Jeugt
Tom Ellis

Michael Snoyman
Sandy Maguire

Oskar Wickstrm
Scott Wlaschin

Hillel Wayne

© by above mentioned authors, compilation by M. Oswald.
e7195657c75ceb14f45dbd5090b1b081adcafc60

This document can be freely copied, shared and distritbuted under the Creative Commons CC
BY-SA

The homepage for this document is: https://github.com/oswald2/haskell_articles

2

https://github.com/oswald2/haskell_articles

Contents

1 Introduction 11

2 Introduction by William Yao 13

I Posts on designing and structuring code 15

3 Type Safety Back and Forth - Matt Parsons 17
3.1 The Ripple Effect . 20

3.2 Ask Only What You Need . 21

4 Keep your types small. . . and your bugs smaller - Matt Parsons 23
4.1 Expansion and Restriction . 24

4.2 Constraints Liberate . 25

4.3 Restrict the Range . 25

4.4 A perfect fit . 26

5 Algebraic blindness - David Luposchainsky 27
5.1 Abstract . 27

5.2 Boolean blindness . 27

5.3 Haskell to the rescue . 28

5.4 The petting zoo of blindness . 28

5.5 Algebraic blindness . 28

5.6 Haskell to the rescue, for real this time . 29

5.7 Drawbacks . 29

5.8 Conclusion . 29

6 Parse, don’t validate - Alexis King 31
6.1 The essence of type-driven design . 31

6.1.1 The realm of possibility . 31

6.2 Turning partial functions total . 32

6.2.1 Managing expectations . 32

6.2.2 Paying it forward . 34

6.3 The power of parsing . 35

6.4 The danger of validation . 37

6.5 Parsing, not validating, in practice . 37

6.6 Recap, reflection, and related reading . 39

7 On Ad-hoc Datatypes - Jasper Van der Jeugt 41

8 Good design and type safety in Yahtzee - Tom Ellis 45

3

Contents

8.1 Original implementation . 46

8.2 Explain the invariant . 47

8.3 Avoid catch-all pattern . 47

8.4 Add another invariant check . 47

8.5 Add pop function . 48

8.6 Indicate that a value is unused . 48

8.7 Prepare to rearrange arguments . 49

8.8 Rearrange arguments . 49

8.9 Rearrange arguments further . 49

8.10 Avoid unpacking tuple . 50

8.11 We don’t use the Integer. Make this structural. 50

8.12 Introduce a type synonym . 50

8.13 Make illegal states unrepresentable . 51

8.14 Use uncons . 51

8.15 Don’t need uncons . 51

8.16 Use do notation . 53

8.17 Prepare for mapM . 53

8.18 Use mapM . 53

8.19 Avoid boolean blindness . 53

8.20 Keep the better version . 54

9 Using our brain less in refactoring Yahtzee - Tom Ellis 57
9.1 The starting point . 57

9.2 Use do-notation . 58

9.3 Observe that both branches pair a list with n-1 58

9.4 Lift fmap outside do . 59

9.5 Combine duplicated functions at top level 59

9.6 Split function body into separate function 59

9.7 Substitute definition of allRolls . 60

9.8 Remove redundant pairing . 60

9.9 Generalise type of allRollsBody . 60

9.10 Remove unused argument . 61

9.11 Conclusion . 62

10 Weakly Typed Haskell - Michael Snoyman 63
10.1 A strongly typed language? . 64

10.2 Quarantining weak typing . 65

10.3 Discipline and best practices . 65

11 The Trouble with Typed Errors - Matt Parsons 67
11.1 Monolithic error types are bad . 70

11.2 Boilerplate be gone! . 71

11.3 Generics to the rescue! . 72

11.4 Mostly? . 73

12 Type-Directed Code Generation - Sandy Maguire 75
12.1 Context . 75

12.2 Generating Metadata . 76

12.3 The Client Side . 77

4

Contents

12.4 The Server Side . 78

12.4.1 Method Discovery . 78

12.4.2 Typing the Server . 80

12.4.3 Implementing the Server . 82

12.5 Client-side Usability . 84

12.5.1 Removing Proxies . 84

12.5.2 Better “Wrong Streaming Variety” Errors 85

12.5.3 Better “Wrong Method” Errors . 86

12.6 Conclusion . 87

II Posts on testing 89

13 Practical testing in Haskell - Jasper van der Jeugt 91
13.1 Introduction . 91

13.2 Test frameworks in Haskell . 91

13.3 A module structure for tests . 92

13.4 What to test . 93

13.5 Simple HUnit tests . 93

13.6 Simple QuickCheck tests . 94

13.7 Tricks for writing Arbitrary instances . 94

13.7.1 The Action trick . 94

13.7.2 The SmallInt trick . 96

13.8 Monadic QuickCheck . 96

13.9 Tying everything up . 97

14 Property-Based Testing in a Screencast Editor: Introduction - Oskar Wick-
ström 99
14.1 Komposition . 99

14.2 Property-Based Testing . 100

14.3 Properties of the Ugly Parts . 101

14.4 Designing for Testability . 101

14.5 Patterns for Properties . 102

14.6 Testing Case Studies . 102

14.7 Credits . 102

15 Case Study 1: Timeline Flattening - Oskar Wickström 103
15.1 The Hierarchical Timeline . 103

15.1.1 Video and Audio in Parallels . 103

15.1.2 Gaps . 104

15.1.3 Sequences . 105

15.1.4 The Timeline . 105

15.2 Timeline Flattening . 106

15.3 Property Tests . 107

15.3.1 Property: Duration Equality . 107

15.3.2 Property: Clip Occurence . 108

15.4 Still Frames Used . 110

15.4.1 Property: Single Initial Video Clip 110

15.4.2 Property: Ending with a Video Clip 111

5

Contents

15.4.3 Property: Ending with an Implicit Video Gap 112

15.5 Properties: Flattening Equivalences . 113

15.6 Missing Properties . 115

15.7 A Missing Feature . 115

15.8 Obligatory Cliff-Hanger . 116

16 Case Study 2: Video Scene Classification - Oskar Wickström 117
16.1 Classifying Scenes in Imported Video . 117

16.2 Manually Testing the Classifier . 118

16.3 Video Classification Properties . 118

16.4 Testing Still Segment Minimum Length 119

16.5 Testing Moving Segment Time Spans . 121

16.6 Bugs! Bugs everywhere! . 122

16.7 Summary . 124

16.8 Coming Up . 125

17 Case Study 3: Integration Testing - Oskar Wickström 127
17.1 A History of Two Stacks . 127

17.1.1 Performing Actions . 127

17.1.2 Undoing Actions . 128

17.1.3 Redoing Actions . 129

17.1.4 Dealing With Performance Problems 129

17.2 Refactoring with Property-Based Integration Tests 130

17.2.1 Undo/Redo Tests . 130

17.2.2 All Tests Passing, Everything Works 132

17.3 Why Test With Properties? . 132

18 Choosing properties for property-based testing - Scott Wlaschin 135
18.1 Categories for properties . 135

18.1.1 “Different paths, same destination” 136

18.1.2 “There and back again” . 136

18.1.3 “Some things never change” . 136

18.1.4 “The more things change, the more they stay the same” 137

18.1.5 “Solve a smaller problem first” . 137

18.1.6 “Hard to prove, easy to verify” . 138

18.1.7 “The test oracle” . 138

18.2 Putting the categories to work with some real examples 139

18.2.1 “Different paths, same destination” applied to a list sort 139

18.3 “There and back again” . 145

18.4 “Hard to prove, easy to verify” . 146

18.5 “Some things never change” . 149

18.5.1 Sort invariant - 2nd attempt . 150

18.5.2 Sort invariant - 3rd attempt . 152

18.6 Sidebar: Combining properties . 153

18.7 “Solving a smaller problem” . 155

18.8 Is the EDFH really a problem? . 156

18.9 “The more things change, the more they stay the same” 156

18.10“Two heads are better than one” . 158

18.11Generating Roman numerals in two different ways 159

6

Contents

18.12“Model-based” testing . 161

18.13Interlude: A game based on finding properties 161

18.14Applying the categories one more time 161

18.14.1 Properties for an immutable Dollar 164

18.14.2 Dollar properties – version 3 . 165

18.14.3 Dollar properties – version 4 . 167

18.14.4 Logging the function parameter 168

18.15TDD vs. property-based testing . 169

18.16The end, at last . 170

19 Finding Property Tests - Hillel Wayne 171
19.1 Contract-wise . 172

19.1.1 Types . 172

19.1.2 First element . 173

19.1.3 The dang definition . 174

19.2 Property-wise . 175

19.2.1 Preserving Transformation . 175

19.2.2 Controlled Transformation . 176

19.2.3 Oracle Generators . 177

19.3 Limitations . 177

19.3.1 Summary . 178

20 Using types to unit-test in Haskell - Alexis King 181
20.1 First, an aside on testing philosophy . 181

20.2 Drawing seams using types . 182

20.2.1 Making implicit interfaces explicit 183

20.3 Testing with typeclasses: an initial attempt 184

20.3.1 Testing side-effectful code . 185

20.4 Creating first-class typeclass instances . 187

20.4.1 Creating an instance proxy . 188

20.5 Removing the boilerplate using test-fixture 191

20.6 Conclusion, credits, and similar techniques 192

21 Time Travelling and Fixing Bugs with Property-Based Testing - Oskar Wick-
ström 193
21.1 System Under Test: User Signup Validation 193

21.1.1 The Validation Type . 194

21.2 Validation Property Tests . 194

21.2.1 A Positive Property Test . 195

21.2.2 Negative Property Tests . 196

21.2.3 Accumulating All Failures . 197

21.3 The Value of a Property . 197

21.4 Testing Generators . 198

21.4.1 Adding Coverage Checks . 199

21.5 From Ages to Birth Dates . 201

21.5.1 Keeping Things Deterministic . 202

21.5.2 Generating Dates . 202

21.5.3 Rewriting Existing Properties . 203

21.6 A Single Validation Property . 205

7

21.7 February 29th . 207

21.7.1 Test Count and Coverage . 207

21.7.2 Covering Leap Days . 209

21.8 Summary . 212

22 Metamorphic Testing - Hillel Wayne 215
22.1 Background . 215

22.2 Motivation . 216

22.3 Metamorphic Testing . 216

22.4 The Case Studies . 217

22.4.1 The Problem . 218

22.4.2 Learning More . 219

22.4.3 PS: Request . 219

23 Unit testing effectful Haskell with monad-mock 221
23.1 A first glance at monad-mock . 221

23.2 Why unit test? . 223

23.3 Why mock? . 224

23.3.1 Isolating mocks . 225

23.4 How monad-mock works . 226

23.4.1 Connecting the mock to its class 227

23.5 A brief comparison with free(r) monads 228

23.6 Conclusion . 228

Bibliography 229

List of Figures

8.1 Explain the invariant . 47

8.2 Avoid catch-all pattern . 47

8.3 Add another invariant check . 48

8.4 Indicate that a value is unused . 49

8.5 Prepare to rearrange arguments . 49

8.6 Rearrange arguments . 49

8.7 Rearrange arguments further . 50

8.8 Avoid unpacking tuple . 50

8.9 We don’t use the Integer . 51

8.10 Introduce a type synonym . 51

8.11 Make illegal states unrepresentable . 52

8.12 Use uncons . 52

8.13 Don’t need uncons . 52

8.14 Use do notation . 53

8.15 Prepare for mapM . 53

8.16 Use mapM . 54

8

List of Figures

8.17 Avoid boolean blindness . 54

9.1 Observe that both branches pair a list with n-1 58

9.2 Lift fmap outside do . 59

9.3 Lift fmap outside do . 60

9.4 Split function body into separate function 60

9.5 Substitute definition of allRolls . 60

9.6 Remove redundant pairing . 61

14.1 Komposition’s timeline mode . 100

15.1 Clips and gaps are placed in video and audio tracks 104

15.2 Still frames are automatically inserted at implicit gaps to match track
duration . 104

15.3 Adding explicit gaps manually . 105

15.4 A sequence containing two parallels . 105

15.5 A timeline containing two sequences, with two parallels each 106

15.6 Timeline flattening transforming a hierarchical timeline 106

15.7 Hedgehog presenting a minimal counter-example 109

15.8 Still frames being sourced from the single initial video clip 111

15.9 Still frames being sourced from following video clips when possible . . 112

15.10Still frames being sourced from preceding video clip for last implicit gap 114

16.1 A generated sequence of expected classified segments 118

16.2 Pixel frames derived from a sequence of expected classified output seg-
ments . 119

16.3 Hedgehog output . 123

17.1 Performing an action pushes the previous state onto the undo stack and
discards the redo stack . 128

17.2 Undoing pushes the previous state onto the redo stack and pops the
undo stack for a current state . 128

17.3 Undoing pushes the previous state onto the redo stack and pops the
undo stack for a current state . 129

18.1 Commutative Properties . 136

18.2 Inverse Properties . 137

18.3 Invariant Properties . 137

18.4 Idempotent Properties . 137

18.5 Induction Properties . 138

18.6 Easy to Verify Properties . 138

18.7 Test Oracle . 139

18.8 List Sort Property . 140

18.9 List Sort Property +1 . 140

18.10List Sort Property with Int32.MinValue 141

18.11List Sort Property with negate . 143

18.12List reverse . 144

18.13List reverse with inverse . 145

18.14String split property . 146

18.15Pairwise property . 147

9

List of Figures

18.16Permutation property . 150

18.17Zendo . 162

18.18Dollar times . 164

18.19Dollar times . 166

18.20Dollar times . 166

18.21Dollar map . 167

21.1 Hedgehog fails . 199

21.2 Hedgehog fails . 200

21.3 Hedgehog passes . 201

21.4 Hedgehog results . 204

21.5 Hedgehog results . 207

21.6 Hedgehog results . 208

21.7 Hedgehog results . 212

10

1. Introduction
William Yao created a link collection (see here and here [1]) of Haskell articles about
design and testing. I did like this collection very much but wanted to have all of them
in one document, with one formatting. So the idea of this document (which is now
more like a book) was born.

I included Williams original comments to the articles at the beginning of each chap-
ter. The articles itself were included as unchanged as possible. Sometimes the for-
matting needed to change, sometimes they referenced each other, sometimes LATEX
needed to be convinced to apply a certain formatting. Anyway, now it is done, so I
wish all of you readers a lot of fun reading this document while hopefully learning
something new.

Michael Oswald

11

https://williamyaoh.com/posts/2019-11-24-design-and-testing-articles.html

1. Introduction

12

2. Introduction by William Yao
For a language that’s beloved for its ability to guide the structure of programs into
being easier to understand, easier to maintain, and easier to get correct, there’s not
a lot of resources on how to best use the tools that Haskell provides. Lots of terms
and buzzwords, not a lot of in-depth practical guidance on best practices. So I’ve
put together a list of community blog posts and articles on the theme of building more
correct programs.

These are split roughly in two groups: posts about how best to leverage the type
system to eliminate errors before they even occur, while striking a balance between
type complexity and usability; and posts about using Haskell’s best-in-class testing
facilities to shore up what can’t be typed1. Despite the hype around Haskell’s type
system, it’s unlikely in a program of any complexity that you’ll be able to completely
eliminate the possibility of bugs and errors purely through the type system alone.
Using both types and tests gives you a better power-to-weight ratio for building main-
tainable, bug-free programs than either does alone.

Note that I’m explicitly not including articles and resources about basics or setup
of the topics in question. Instead of “what is a Maybe and why use it,” think “what
are some typical patterns around using Maybes in a real codebase.” Instead of “what
is property-based testing”, think “here are best practices around choosing properties
to test.” Since there are already plenty of good introductory resources on things like

“how do I get started with QuickCheck”, we’ll focus here instead on how best to use
the tools we have.

I’m fully aware that this is not a complete listing even of topics that Haskell pro-
grammers know about and regularly make use of2. If you feel there are articles miss-
ing from here that are clear, easy-to-understand, and go in-depth on how to use
correctness-enforcing techniques, please let me know!

Found this useful? Still have questions? Talk to me!

Posts in each section are roughly ordered by difficulty.

1 Or at least, not typed easily

2 Tagged datatypes, for instance. It’s easy to ex-
plain what they are, but I haven’t seen good exam-
ples of how people use them in a real codebase.

13

2. Introduction by William Yao

14

Part I.

Posts on designing and structuring code

15

3. Type Safety Back and Forth - Matt
Parsons

William Yao:
Essential reading. A very typical design technique of restricting what inputs

your functions take to ensure that they can’t fail.
The most typical instances of using this are NonEmpty for lists with at least one

element and Natural for non-negative integers. Oddly, I don’t often see people
do the same thing for other structures where this would be useful; for instance,
nonempty Vectors or nonempty Text. Thankfully, it’s easy enough to define
yourself.

data NonEmptyVec a = NonEmptyVec a (Vector a)

-- An additional invariant you might want to enforce is
-- 'not all whitespace'
data NonEmptyText = NonEmptyText Char Text
Original Article: [2]

Types are a powerful construct for improving program safety. Haskell has a few
notable ways of handling potential failure, the most famous being the venerable Maybe
type:

data Maybe a
= Nothing
| Just a

We can use Maybe as the result of a function to indicate:

Hey, friend! This function might fail. You’ll need to handle the Nothing case.

This allows us to write functions like a safe division function:

safeDivide :: Int -> Int -> Maybe Int
safeDivide i 0 = Nothing
safeDivide i j = Just (i `div` j)

I like to think of this as pushing the responsibility for failure forward. I’m telling
the caller of the code that they can provide whatever Ints they want, but that some
condition might cause them to fail. And the caller of the code has to handle that
failure later on.

This is the easiest technique to show and tell, because it’s one-size-fits-all. If your
function can fail, just slap Maybe or Either on the result type and you’ve got safety. I
can write a 35 line blog post to show off the technique, and if I were feeling frisky, I
could use it as an introduction to Functor, Monad, and all that jazz.

17

3. Type Safety Back and Forth - Matt Parsons

Instead, I’d like to share another technique. Rather than push the responsibility for
failure forward, let’s explore pushing it back. This technique is a little harder to show,
because it depends on the individual cases you might use.

If pushing responsibility forward means accepting whatever parameters and having
the caller of the code handle possibility of failure, then pushing it back is going to mean
we accept stricter parameters that we can’t fail with. Let’s consider safeDivide, but
with a more lax type signature:

safeDivide :: String -> String -> Maybe Int
safeDivide iStr jStr = do

i <- readMay iStr
j <- readMay jStr
guard (j /= 0)
pure (i `div` j)

This function takes two strings, and then tries to parse Ints out of them. Then, if
the j parameter isn’t 0, we return the result of division. This function is safe, but
we have a much larger space of calls to safeDivide that fail and return Nothing.
We’ve accepted more parameters, but we’ve pushed a lot of responsibility forward for
handling possible failure.

Let’s push the failure back.

safeDivide :: Int -> NonZero Int -> Int
safeDivide i (NonZero j) = i `div` j

We’ve required that users provide us a NonZero Int rather than any old Int. We’ve
pushed back against the callers of our function:

No! You must provide a NonZero Int. I refuse to work with just any Int,
because then I might fail, and that’s annoying.

So speaks our valiant little function, standing up for itself!
Let’s implement NonZero. We’ll take advantage of Haskell’s PatternSynonyms lan-

guage extension to allow people to pattern match on a “constructor” without expos-
ing a way to unsafely construct values.

{-# LANGUAGE PatternSynonyms #-}

module NonZero
(NonZero()
, pattern NonZero
, unNonZero
, nonZero
) where

newtype NonZero a = UnsafeNonZero a

pattern NonZero a <- UnsafeNonZero a

unNonZero :: NonZero a -> a
unNonZero (UnsafeNonZero a) = a

18

nonZero :: (Num a, Eq a) => a -> Maybe (NonZero a)
nonZero 0 = Nothing
nonZero i = Just (UnsafeNonZero i)

This module allows us to push the responsibility for type safety backwards onto
callers.

As another example, consider head. Here’s the unsafe, convenient variety:

head :: [a] -> a
head (x:xs) = x
head [] = error "oh no"

This code is making a promise that it can’t keep. Given the empty list, it will fail at
runtime.

Let’s push the responsibility for safety forward:

headMay :: [a] -> Maybe a
headMay (x:xs) = Just x
headMay [] = Nothing

Now, we won’t fail at runtime. We’ve required the caller to handle a Nothing case.
Let’s try pushing it back now:

headOr :: a -> [a] -> a
headOr def (x:xs) = x
headOr def [] = def

Now, we’re requiring that the caller of the function handle possible failure before they
ever call this. There’s no way to get it wrong. Alternatively, we can use a type for
nonempty lists!

data NonEmpty a = a :| [a]

safeHead :: NonEmpty a -> a
safeHead (x :| xs) = x

This one works just as well. We’re requiring that the calling code handle failure ahead
of time.

A more complicated example of this technique is the justified-containers library.
The library uses the type system to prove that a given key exists in the underlying
Map. From that point on, lookups using those keys are total: they are guaranteed to
return a value, and they don’t return a Maybe.

This works even if you map over the Map with a function, transforming values. You
can also use it to ensure that two maps share related information. It’s a powerful
feature, beyond just having type safety.

19

https://hackage.haskell.org/package/justified-containers-0.1.2.0/docs/Data-Map-Justified-Tutorial.html

3. Type Safety Back and Forth - Matt Parsons

3.1. The Ripple Effect
When some piece of code hands us responsibility, we have two choices:

1. Handle that responsibility.

2. Pass it to someone else!

In my experience, developers will tend to push responsibility in the same direction
that the code they call does. So if some function returns a Maybe, the developer
is going to be inclined to also return a Maybe value. If some function requires a
NonEmpty Int, then the developer is going to be inclined to also require a NonEmpty
Int be passed in.

This played out in my work codebase. We have a type representing an Order with
many Items in it. Originally, the type looked something like this:

data Order = Order { items :: [Item] }

The Items contained nearly all of the interesting information in the order, so almost
everything that we did with an Order would need to return a Maybe value to handle
the empty list case. This was a lot of work, and a lot of Maybe values!

The type is too permissive. As it happens, an Order may not exist without at least
one Item. So we can make the type more restrictive and have more fun!

We redefined the type to be:

data Order = Order { items :: NonEmpty Item }

All of the Maybes relating to the empty list were purged, and all of the code was pure
and free. The failure case (an empty list of orders) was moved to two sites:

1. Decoding JSON

2. Decoding database rows

Decoding JSON happens at the API side of things, when various services POST updates
to us. Now, we can respond with a 400 error and tell API clients that they’ve provided
invalid data! This prevents our data from going bad.

Decoding database rows is even easier. We use an INNER JOIN when retrieving
Orders and Items, which guarantees that each Order will have at least one Item in
the result set. Foreign keys ensure that each Item’s Order is actually present in the
database. This does leave the possibility that an Order might be orphaned in the
database, but it’s mostly safe.

When we push our type safety back, we’re encouraged to continue pushing it back.
Eventually, we push it all the way back – to the edges of our system! This simplifies
all of the code and logic inside of the system. We’re taking advantage of types to
make our code simpler, safer, and easier to understand.

20

3.2. Ask Only What You Need

3.2. Ask Only What You Need
In many senses, designing our code with type safety in mind is about being as strict
as possible about your possible inputs. Haskell makes this easier than many other
languages, but there’s nothing stopping you from writing a function that can take
literally any binary value, do whatever effects you want, and return whatever binary
value:

foobar :: ByteString -> IO ByteString

A ByteString is a totally unrestricted data type. It can contain any sequence of bytes.
Because it can express any value, we have very little guarantees on what it actually
contains, and we are very limited in how we can safely handle this.

By restricting our past, we gain freedom in the future.

21

3. Type Safety Back and Forth - Matt Parsons

22

4. Keep your types small. . . and your
bugs smaller - Matt Parsons

Original article: [3]

In my previous article “Type Safety Back and Forth” (see chapter 3), I discussed two
different techniques for bringing type safety to programs that may fail. On the one
hand, you can push the responsibility forward. This technique uses types like Either
and Maybe to report a problem with the inputs to the function. Here are two example
type signatures:

safeDivide
:: Int
-> Int
-> Maybe Int

lookup
:: Ord k
=> k
-> Map k a
-> Maybe a

If the second parameter to safeDivide is 0, then we return Nothing. Likewise, if the
given k is not present in the Map, then we return Nothing.

On the other hand, you can push it back. Here are those functions, but with the
safety pushed back:

safeDivide
:: Int
-> NonZero Int
-> Int

lookupJustified
:: Key ph k
-> Map ph k a
-> a

With safeDivide, we require the user pass in a NonZero Int – a type that guarantees
that the underlying value is not 0. With lookupJustified, the ph type guarantees that
the Key is present in the Map, so we can pull the resulting value out without requiring
a Maybe. (Check out the tutorial for justified-containers, it is pretty awesome).

23

https://hackage.haskell.org/package/justified-containers-0.3.0.0/docs/Data-Map-Justified-Tutorial.html

4. Keep your types small. . . and your bugs smaller - Matt Parsons

4.1. Expansion and Restriction
“Type Safety Back and Forth” uses the metaphor of “pushing” the responsibility in
one of two directions:

• forwards: the caller of the function is responsible for handling the possible error
output

• backwards: the caller of the function is required to providing correct inputs

However, this metaphor is a bit squishy. We can make it more precise by talking
about the “cardinality” of a type – how many values it can contain. The type Bool
can contain two values – True and False, so we say it has a cardinality of 2. The type
Word8 can express the numbers from 0 to 255, so we say it has a cardinality of 256.

The type Maybe a has a cardinality of 1 + a. We get a “free” value Nothing ::
Maybe a. For every value of type a, we can wrap it in Just. The type Either e a has
a cardinality of e + a. We can wrap all the values of type e in Left, and then we can
wrap all the values of type a in Right.

The first technique – pushing forward – is “expanding the result type.” When we
wrap our results in Maybe, Either, and similar types, we’re saying that we can’t handle
all possible inputs, and so we must have extra outputs to safely deal with this.

Let’s consider the second technique. Specifically, here’s NonZero and NonEmpty, two
common ways to implement it:

newtype NonZero a
= UnsafeNonZero
{ unNonZero :: a
}

nonZero :: (Num a, Eq a) => a -> Maybe (NonZero a)
nonZero 0 = Nothing
nonZero i = Just (UnsafeNonZero i)

data NonEmpty a = a :| [a]

nonEmpty :: [a] -> Maybe (NonEmpty a)
nonEmpty [] = Nothing
nonEmpty (x:xs) = x :| xs

What is the cardinality of these types?
NonZero a represents “the type of values a such that the value is not equal to 0.”

NonEmpty a represents “the type of lists of a that are not empty”. In both of these
cases, we start with some larger type and remove some potential values. So the
type NonZero a has the cardinality a− 1, and the type NonEmpty a has the cardinality
[a]− 1.

Interestingly enough, [a] has an infinite cardinality, so [a] − 1 seems somewhat
strange – it is also infinite! Math tells us that these are even the same infinity. So it’s
not the mere cardinality that helps – it is the specific value(s) that we have removed
that makes this type safer for certain operations.

24

4.2. Constraints Liberate

These are custom examples of refinement types. Another closely related idea is
quotient types. The basic idea here is to restrict the size of our inputs. Slightly more
formally,

• Forwards: expand the range

• Backwards: restrict the domain

4.2. Constraints Liberate
Runar Bjarnason has a wonderful talk titled Constraints Liberate, Liberties Constrain.
The big idea of the talk, as I see it, is this:

When we restrict what we can do, it’s easier to understand what we can do.

I feel there is a deep connection between this idea and Rich Hickey’s talk Simple Made
Easy. In both cases, we are focusing on simplicity – on cutting away the inessential
and striving for more elegant ways to express our problems.

Pushing the safety forward – expanding the range – does not make things simpler.
It provides us with more power, more options, and more possibilities. Pushing the
safety backwards – restricting the domain – does make things simpler. We can use
this technique to take away the power to get it wrong, the options that aren’t right,
and the possibilities we don’t want.

Indeed, if we manage to restrict our types sufficiently, there may be only one imple-
mentation possible! The classic example is the identity function:

identity :: a -> a
identity a = a

This is the only implementation of this function that satisfies the type signature (ig-
noring undefined, of course). In fact, for any function with a sufficiently precise type
signature, there is a way to automatically derive the function! Joachim Breitner’s
justDoIt is a fascinating utility that can solve these implementations for you.

With sufficiently fancy types, the computer can write even more code for you.
The programming language Idris can write well-defined functions like zipWith and
transpose for length-indexed lists nearly automatically!

4.3. Restrict the Range
I see this pattern and I am compelled to fill it in: I’ve talked about restricting the

Restrict Expand
Range :(
Domain :D

domain and expanding the range. Expanding the domain seems silly to do – we
accept more possible values than we know what to do with. This is clearly not going
to make it easier or simpler to implement our programs. However, there are many
functions in Haskell’s standard library that have a domain that is too large. Consider:

25

https://ucsd-progsys.github.io/liquidhaskell-tutorial/
https://www.hedonisticlearning.com/posts/quotient-types-for-programmers.html
https://www.youtube.com/watch?v=GqmsQeSzMdw
https://www.youtube.com/watch?v=34_L7t7fD_U
https://www.youtube.com/watch?v=34_L7t7fD_U
https://www.joachim-breitner.de/blog/735-The_magic_%E2%80%9CJust_do_it%E2%80%9D_type_class
https://youtu.be/X36ye-1x_HQ?t=1140
https://youtu.be/X36ye-1x_HQ?t=1140

4. Keep your types small. . . and your bugs smaller - Matt Parsons

take :: Int -> [a] -> [a]

Int, as a domain, is both too large and too small. It allows us to provide negative
numbers: what does it even mean to take -3 elements from a list? As Int is a finite
type, and [a] is infinite, we are restricted to only using this function with sufficiently
small Ints. A closer fit would be take :: Natural -> [a] -> [a]. Natural allows
any non-negative whole number, and perfectly expresses the reasonable domain. Ex-
panding the domain isn’t desirable, as we might expect.

base has functions with a range that is too large, as well. Let’s consider:

length :: [a] -> Int

This has many of the same problems as take – a list with too many elements will over-
flow the Int, and we won’t get the right answer. Additionally, we have a guarantee
that we forget – a length for any container must be positive! We can more correctly
express this type by restricting the output type:

length :: [a] -> Natural

4.4. A perfect fit
The more precisely our types describe our program, the fewer ways we have to go
wrong. Ideally, we can provide a correct output for every input, and we use a type
that tightly describes the properties of possible outputs.

26

5. Algebraic blindness - David
Luposchainsky

William Yao:
The motivating problem: if I have a Maybe Int, I only implicitly know what

the two branches mean. Nothing could mean “something bad happened, abort”,
or it could mean “I haven’t found anything yet, keep going.” Conversely, a value
of Just x could be a useful value, or it could be a subroutine signalling that an
error code occurred. The names are too generic; the structure only tells us what
we have, not what it’s for.

Goes through how we might solve this problem by defining new datatypes that
are isomorphic to, say, Bool, but with more useful names. Note that the problem
that the article talks about with regards to not having typeclass instances for your
custom types can (since GHC 8.6) be solved using DerivingVia.

Original article: [4]

5.1. Abstract
Algebraic data types make data more flexible, but also prone to a form of generalized
Boolean Blindness, making code more difficult to maintain. Luckily, refactoring the
issues is completely type-safe.

5.2. Boolean blindness
In programming, there is a common problem known as Boolean Blindness, what it

“means” to be True depends heavily on the context, and cannot be inferred by the
value alone. Consider

main = withFile True "file.txt" (\handle -> do stuff)

The Boolean parameter could distinguish between read-only/write-only, or read-only-
/read+write, whether the file should be truncated before opening, and countless other
possibilities.

And often there is an even worse issue: we have two booleans, and we do not know
whether they describe something in the same problem domain. A boolean used for
read-only-vs-write-only looks just the same as one distinguishing red from blue. And
then, one day, we open a file in “blue mode”, and probably nothing good follows.

The point is: in order to find out what the True means, you probably have to read
documentation or code elsewhere.

27

5. Algebraic blindness - David Luposchainsky

5.3. Haskell to the rescue
Haskell makes it very natural and cheap to define our own data types. The example
code above would be expressed as

main = withFile ReadMode "file.txt" (\handle -> do stuff)

in more idiomatic Haskell. Here, the meaning of the field is obvious, and since a
data type data IOMode = ReadMode | WriteMode has nothing to do with a data type
data Colours = Red | Blue, we cannot accidentally pass a Red value to our function,
despite the fact that they would both have corresponded to True in the Boolean-typed
example.

5.4. The petting zoo of blindness
Boolean blindness is of course just a name for the most characteristic version of the
issue that most standard types share. An Int parameter to a server might be a port
or a timeout, a String could be a host, a route, a log prefix, and so on.

The Haskell solution is to simply wrap things in newtypes, tagging values with
phantom types, or introducing type synonyms. (I’m not a fan of the latter, which you
can read more about in a previous article.)

5.5. Algebraic blindness
Haskell has a lot more “simple, always available, nicely supported” types than most
other languages, for example Maybe, Either, tuples or lists. These types naturally
extend Boolean Blindness.

• Maybe adds another distinct value to a type. Nothing is sometimes used to de-
note an error case (this is what many assume by default, implicitly given by
its Monad instance), sometimes the “nothing weird happened” case, and some-
times something completely different.

Maybe a is as blind as a, plus one value.

• Either is similar: sometimes Left is an exceptional case, sometimes it’s just “the
other” case.

• Either a b is as blind as a plus as blind as b, plus one for the fact that Left and
Right do not have intrinsic meaning.

• Pairs have two fields, but how do they relate to each other? Does one maybe tell
us about errors in the other? We cannot know.

(a,b) is as blind as a times the blindness of b.

• Unit is not very blind, since even synonyms of it mostly mean the same thing:
we don’t really care about the result.

In GHCi’s source code, there is a value of type Maybe Bool passed around, which has
three possible values:

28

https://github.com/quchen/articles/blob/master/tag-dont-type.md

5.6. Haskell to the rescue, for real this time

1. Nothing means there is no more input to process when GHCi is invoked via ghc
-e.

2. Just True reports success of the last command.

3. Just False is an error in the last command, and ghc -e should abort with an
exit code of 1, while a GHCi session should continue.

It is very hard to justify this over something like

data CommandResult
= NoMoreInput -- ^ Haddock might go here!
| Success
| Failure

which is just as easy to implement, has four lines of overhead (instead of 0 lines of
overheadache), is easily searchable in full-text search even, and gives us type errors
when we use it in the wrong context.

5.6. Haskell to the rescue, for real this time
We’re lucky, because Haskell has a built-in solution here as well. We can prototype
our programs not worrying about the precise meaning of symbols, use Either () ()
instead of Bool because we might need the flexibility, and do all sorts of atrocities.

The type system allows us to repair our code: just understand what the different
values of our blind values mean, and encode this in a new data type. Then pick a
random use site, and just put it in there. The compiler will yell at you for a couple of
minutes, but it will report every single conflicting site, and since you’re introducing
something entirely new, there is no way you are producing undetected clashes. I
found this type of refactoring to be one of the most powerful tools Haskell has to offer, but
we rarely speak about it because it seems so normal to us.

5.7. Drawbacks
Introducing new domain types has a drawback: we lose the API of the standard types.
The result is that we sometimes have to write boilerplate to get specific parts of the
API back, which is unfortunate, and sometimes this makes it not worth bothering
with the anti-blindness refactoring.

5.8. Conclusion
When you have lots of faceless data types in your code, consider painting them with
their domain meanings. Make them distinct, make them memorable, make them
maintainable. And sometimes, when you see a type that looks like

data IOMode
= ReadMode
| WriteMode

29

5. Algebraic blindness - David Luposchainsky

| AppendMode
| ReadWriteMode

take a moment to appreciate that the author hasn’t used

Either Bool Bool
-- ^ ^
-- | |
-- | Complex modes: append, read+write
-- |
-- Simple modes: read/write only

instead.

30

6. Parse, don’t validate - Alexis King
William Yao:

Once all your functions have their inputs suitably restricted, how to actually go
about ingesting real-world data (which will always have issues) and producing the
types we need? Enforce it at the “barriers” in your code. That might be at the very
start of an HTTP handler, it might be between two modules in your codebase. Do
it right and your core logic contains only what it needs to solve the actual problem;
no need for cluttering it up with extraneous error handling.

Original article: [5]

Historically, I’ve struggled to find a concise, simple way to explain what it means to
practice type-driven design. Too often, when someone asks me “How did you come
up with this approach?” I find I can’t give them a satisfying answer. I know it didn’t
just come to me in a vision – I have an iterative design process that doesn’t require
plucking the “right” approach out of thin air—yet I haven’t been very successful in
communicating that process to others.

However, about a month ago, I was reflecting on Twitter about the differences I
experienced parsing JSON in statically- and dynamically-typed languages, and finally,
I realized what I was looking for. Now I have a single, snappy slogan that encapsulates
what type-driven design means to me, and better yet, it’s only three words long:

Parse, don’t validate.

6.1. The essence of type-driven design
Alright, I’ll confess: unless you already know what type-driven design is, my catchy
slogan probably doesn’t mean all that much to you. Fortunately, that’s what the
remainder of this blog post is for. I’m going to explain precisely what I mean in gory
detail—but first, we need to practice a little wishful thinking.

6.1.1. The realm of possibility
One of the wonderful things about static type systems is that they can make it pos-
sible, and sometimes even easy, to answer questions like “is it possible to write this
function?” For an extreme example, consider the following Haskell type signature:

foo :: Integer -> Void

Is it possible to implement foo? Trivially, the answer is no, as Void is a type that
contains no values, so it’s impossible for any function to produce a value of type

31

6. Parse, don’t validate - Alexis King

Void1 That example is pretty boring, but the question gets much more interesting if
we choose a more realistic example:

head :: [a] -> a

This function returns the first element from a list. Is it possible to implement? It
certainly doesn’t sound like it does anything very complicated, but if we attempt to
implement it, the compiler won’t be satisfied:

head :: [a] -> a
head (x:_) = x

warning: [-Wincomplete-patterns]
Pattern match(es) are non-exhaustive
In an equation for 'head': Patterns not matched: []

This message is helpfully pointing out that our function is partial, which is to say it
is not defined for all possible inputs. Specifically, it is not defined when the input is
[], the empty list. This makes sense, as it isn’t possible to return the first element of
a list if the list is empty—there’s no element to return! So, remarkably, we learn this
function isn’t possible to implement, either.

6.2. Turning partial functions total
To someone coming from a dynamically-typed background, this might seem perplex-
ing. If we have a list, we might very well want to get the first element in it. And
indeed, the operation of “getting the first element of a list” isn’t impossible in Haskell,
it just requires a little extra ceremony. There are two different ways to fix the head
function, and we’ll start with the simplest one.

6.2.1. Managing expectations
As established, head is partial because there is no element to return if the list is empty:
we’ve made a promise we cannot possibly fulfill. Fortunately, there’s an easy solution
to that dilemma: we can weaken our promise. Since we cannot guarantee the caller
an element of the list, we’ll have to practice a little expectation management: we’ll do
our best return an element if we can, but we reserve the right to return nothing at all.
In Haskell, we express this possibility using the Maybe type:

head :: [a] -> Maybe a

This buys us the freedom we need to implement head—it allows us to return Nothing
when we discover we can’t produce a value of type a after all:

1 Technically, in Haskell, this ignores “bottoms”,
constructions that can inhabit any value. These
aren’t “real” values (unlike null in some other lan-
guages) – they’re things like infinite loops or com-
putations that raise exceptions – and in idiomatic
Haskell, we usually try to avoid them, so reason-

ing that pretends they don’t exist still has value.
But don’t take my word for it – I’ll let Danielsson
et al. convince you that Fast and Loose Reasoning
is Morally Correct.

32

https://www.cs.ox.ac.uk/jeremy.gibbons/publications/fast+loose.pdf
https://www.cs.ox.ac.uk/jeremy.gibbons/publications/fast+loose.pdf

6.2. Turning partial functions total

head :: [a] -> Maybe a
head (x:_) = Just x
head [] = Nothing

Problem solved, right? For the moment, yes. . . but this solution has a hidden cost.
Returning Maybe is undoubtably convenient when we’re implementing head. How-

ever, it becomes significantly less convenient when we want to actually use it! Since
head always has the potential to return Nothing, the burden falls upon its callers
to handle that possibility, and sometimes that passing of the buck can be incredibly
frustrating. To see why, consider the following code:

getConfigurationDirectories :: IO [FilePath]
getConfigurationDirectories = do

configDirsString <- getEnv "CONFIG_DIRS"
let configDirsList = split ',' configDirsString
when (null configDirsList) $

throwIO $ userError "CONFIG_DIRS cannot be empty"
pure configDirsList

main :: IO ()
main = do

configDirs <- getConfigurationDirectories
case head configDirs of

Just cacheDir -> initializeCache cacheDir
Nothing -> error "should never happen; already checked configDirs is non-empty"

When getConfigurationDirectories retrieves a list of file paths from the environ-
ment, it proactively checks that the list is non-empty. However, when we use head
in main to get the first element of the list, the Maybe FilePath result still requires us
to handle a Nothing case that we know will never happen! This is terribly bad for
several reasons:

1. First, it’s just annoying. We already checked that the list is non-empty, why do
we have to clutter our code with another redundant check?

2. Second, it has a potential performance cost. Although the cost of the redundant
check is trivial in this particular example, one could imagine a more complex sce-
nario where the redundant checks could add up, such as if they were happening
in a tight loop.

3. Finally, and worst of all, this code is a bug waiting to happen! What if get-
ConfigurationDirectories were modified to stop checking that the list is empty,
intentionally or unintentionally? The programmer might not remember to up-
date main, and suddenly the “impossible” error becomes not only possible, but
probable.

The need for this redundant check has essentially forced us to punch a hole in
our type system. If we could statically prove the Nothing case impossible, then a
modification to getConfigurationDirectories that stopped checking if the list was
empty would invalidate the proof and trigger a compile-time failure. However, as-
written, we’re forced to rely on a test suite or manual inspection to catch the bug.

33

6. Parse, don’t validate - Alexis King

6.2.2. Paying it forward
Clearly, our modified version of head leaves some things to be desired. Somehow,
we’d like it to be smarter: if we already checked that the list was non-empty, head
should unconditionally return the first element without forcing us to handle the case
we know is impossible. How can we do that?

Let’s look at the original (partial) type signature for head again:

head :: [a] -> a

The previous section illustrated that we can turn that partial type signature into a
total one by weakening the promise made in the return type. However, since we don’t
want to do that, there’s only one thing left that can be changed: the argument type (in
this case, [a]). Instead of weakening the return type, we can strengthen the argument
type, eliminating the possibility of head ever being called on an empty list in the first
place.

To do this, we need a type that represents non-empty lists. Fortunately, the ex-
isting NonEmpty type from Data.List.NonEmpty is exactly that. It has the following
definition:

data NonEmpty a = a :| [a]

Note that NonEmpty a is really just a tuple of an a and an ordinary, possibly-empty
[a]. This conveniently models a non-empty list by storing the first element of the list
separately from the list’s tail: even if the [a] component is [], the a component must
always be present. This makes head completely trivial to implement2:

head :: NonEmpty a -> a
head (x:|_) = x

Unlike before, GHC accepts this definition without complaint – this definition is total,
not partial. We can update our program to use the new implementation:

getConfigurationDirectories :: IO (NonEmpty FilePath)
getConfigurationDirectories = do

configDirsString <- getEnv "CONFIG_DIRS"
let configDirsList = split ',' configDirsString
case nonEmpty configDirsList of

Just nonEmptyConfigDirsList -> pure nonEmptyConfigDirsList
Nothing -> throwIO $ userError "CONFIG_DIRS cannot be empty"

main :: IO ()
main = do

configDirs <- getConfigurationDirectories
initializeCache (head configDirs)

2 in fact, Data.List.NonEmpty already provides
a head function with this type, but just for the sake
of illustration, we’ll reimplement it ourselves.

34

6.3. The power of parsing

Note that the redundant check in main is now completely gone! Instead, we perform
the check exactly once, in getConfigurationDirectories. It constructs a NonEmpty
a from a [a] using the nonEmpty function from Data.List.NonEmpty, which has the
following type:

nonEmpty :: [a] -> Maybe (NonEmpty a)

The Maybe is still there, but this time, we handle the Nothing case very early in our
program: right in the same place we were already doing the input validation. Once
that check has passed, we now have a NonEmpty FilePath value, which preserves (in
the type system!) the knowledge that the list really is non-empty. Put another way,
you can think of a value of type NonEmpty a as being like a value of type [a], plus a
proof that the list is non-empty.

By strengthening the type of the argument to head instead of weakening the type
of its result, we’ve completely eliminated all the problems from the previous section:

• The code has no redundant checks, so there can’t be any performance overhead.

• Furthermore, if getConfigurationDirectories changes to stop checking that
the list is non-empty, its return type must change, too. Consequently, main will
fail to typecheck, alerting us to the problem before we even run the program!

What’s more, it’s trivial to recover the old behavior of head from the new one by
composing head with nonEmpty:

head' :: [a] -> Maybe a
head' = fmap head . nonEmpty

Note that the inverse is not true: there is no way to obtain the new version of head
from the old one. All in all, the second approach is superior on all axes.

6.3. The power of parsing
You may be wondering what the above example has to do with the title of this blog
post. After all, we only examined two different ways to validate that a list was non-
empty – no parsing in sight. That interpretation isn’t wrong, but I’d like to propose
another perspective: in my mind, the difference between validation and parsing lies
almost entirely in how information is preserved. Consider the following pair of func-
tions:

validateNonEmpty :: [a] -> IO ()
validateNonEmpty (_:_) = pure ()
validateNonEmpty [] = throwIO $ userError "list cannot be empty"

parseNonEmpty :: [a] -> IO (NonEmpty a)
parseNonEmpty (x:xs) = pure (x:|xs)
parseNonEmpty [] = throwIO $ userError "list cannot be empty"

35

6. Parse, don’t validate - Alexis King

These two functions are nearly identical: they check if the provided list is empty, and
if it is, they abort the program with an error message. The difference lies entirely
in the return type: validateNonEmpty always returns (), the type that contains no
information, but parseNonEmpty returns NonEmpty a, a refinement of the input type
that preserves the knowledge gained in the type system. Both of these functions check
the same thing, but parseNonEmpty gives the caller access to the information it learned,
while validateNonEmpty just throws it away.

These two functions elegantly illustrate two different perspectives on the role of a
static type system: validateNonEmpty obeys the typechecker well enough, but only
parseNonEmpty takes full advantage of it. If you see why parseNonEmpty is preferable,
you understand what I mean by the mantra “parse, don’t validate.” Still, perhaps you
are skeptical of parseNonEmpty’s name. Is it really parsing anything, or is it merely
validating its input and returning a result? While the precise definition of what it
means to parse or validate something is debatable, I believe parseNonEmpty is a bona-
fide parser (albeit a particularly simple one).

Consider: what is a parser? Really, a parser is just a function that consumes less-
structured input and produces more-structured output. By its very nature, a parser
is a partial function – some values in the domain do not correspond to any value in
the range – so all parsers must have some notion of failure. Often, the input to a
parser is text, but this is by no means a requirement, and parseNonEmpty is a perfectly
cromulent parser: it parses lists into non-empty lists, signaling failure by terminating
the program with an error message.

Under this flexible definition, parsers are an incredibly powerful tool: they allow
discharging checks on input up-front, right on the boundary between a program and
the outside world, and once those checks have been performed, they never need to be
checked again! Haskellers are well-aware of this power, and they use many different
types of parsers on a regular basis:

• The aeson library provides a Parser type that can be used to parse JSON data
into domain types.

• Likewise, optparse-applicative provides a set of parser combinators for parsing
command-line arguments.

• Database libraries like persistent and postgresql-simple have a mechanism for
parsing values held in an external data store.

• The servant ecosystem is built around parsing Haskell datatypes from path com-
ponents, query parameters, HTTP headers, and more.

The common theme between all these libraries is that they sit on the boundary be-
tween your Haskell application and the external world. That world doesn’t speak
in product and sum types, but in streams of bytes, so there’s no getting around a
need to do some parsing. Doing that parsing up front, before acting on the data, can
go a long way toward avoiding many classes of bugs, some of which might even be
security vulnerabilities.

One drawback to this approach of parsing everything up front is that it sometimes
requires values be parsed long before they are actually used. In a dynamically-typed
language, this can make keeping the parsing and processing logic in sync a little
tricky without extensive test coverage, much of which can be laborious to maintain.

36

https://hackage.haskell.org/package/aeson
https://hackage.haskell.org/package/optparse-applicative
https://hackage.haskell.org/package/persistent
https://hackage.haskell.org/package/postgresql-simple
https://hackage.haskell.org/package/servant

6.4. The danger of validation

However, with a static type system, the problem becomes marvelously simple, as
demonstrated by the NonEmpty example above: if the parsing and processing logic go
out of sync, the program will fail to even compile.

6.4. The danger of validation
Hopefully, by this point, you are at least somewhat sold on the idea that parsing is
preferable to validation, but you may have lingering doubts. Is validation really so
bad if the type system is going to force you to do the necessary checks eventually
anyway? Maybe the error reporting will be a little bit worse, but a bit of redundant
checking can’t hurt, right?

Unfortunately, it isn’t so simple. Ad-hoc validation leads to a phenomenon that
the language-theoretic security field calls shotgun parsing. In the 2016 paper, The
Seven Turrets of Babel: A Taxonomy of LangSec Errors and How to Expunge Them,
its authors provide the following definition:

Shotgun parsing is a programming antipattern whereby parsing and input-
validating code is mixed with and spread across processing code—throwing
a cloud of checks at the input, and hoping, without any systematic justifi-
cation, that one or another would catch all the “bad” cases.

They go on to explain the problems inherent to such validation techniques:

Shotgun parsing necessarily deprives the program of the ability to reject
invalid input instead of processing it. Late-discovered errors in an input
stream will result in some portion of invalid input having been processed,
with the consequence that program state is difficult to accurately predict.

In other words, a program that does not parse all of its input up front runs the risk of
acting upon a valid portion of the input, discovering a different portion is invalid, and
suddenly needing to roll back whatever modifications it already executed in order to
maintain consistency. Sometimes this is possible—such as rolling back a transaction
in an RDBMS – but in general it may not be.

It may not be immediately apparent what shotgun parsing has to do with validation
– after all, if you do all your validation up front, you mitigate the risk of shotgun
parsing. The problem is that validation-based approaches make it extremely difficult
or impossible to determine if everything was actually validated up front or if some
of those so-called “impossible” cases might actually happen. The entire program
must assume that raising an exception anywhere is not only possible, it’s regularly
necessary.

Parsing avoids this problem by stratifying the program into two phases – parsing
and execution – where failure due to invalid input can only happen in the first phase.
The set of remaining failure modes during execution is minimal by comparison, and
they can be handled with the tender care they require.

6.5. Parsing, not validating, in practice
So far, this blog post has been something of a sales pitch. “You, dear reader, ought
to be parsing!” it says, and if I’ve done my job properly, at least some of you are

37

http://langsec.org/
http://langsec.org/papers/langsec-cwes-secdev2016.pdf
http://langsec.org/papers/langsec-cwes-secdev2016.pdf

6. Parse, don’t validate - Alexis King

sold. However, even if you understand the “what” and the “why,” you might not feel
especially confident about the “how”.

My advice: focus on the datatypes.

Suppose you are writing a function that accepts a list of tuples representing key-
value pairs, and you suddenly realize you aren’t sure what to do if the list has du-
plicate keys. One solution would be to write a function that asserts there aren’t any
duplicates in the list:

checkNoDuplicateKeys :: (MonadError AppError m, Eq k) => [(k, v)] -> m ()

However, this check is fragile: it’s extremely easy to forget. Because its return value is
unused, it can always be omitted, and the code that needs it would still typecheck. A
better solution is to choose a data structure that disallows duplicate keys by construc-
tion, such as a Map. Adjust your function’s type signature to accept a Map instead of a
list of tuples, and implement it as you normally would.

Once you’ve done that, the call site of your new function will likely fail to typecheck,
since it is still being passed a list of tuples. If the caller was given the value via one
of its arguments, or if it received it from the result of some other function, you can
continue updating the type from list to Map, all the way up the call chain. Eventually,
you will either reach the location the value is created, or you’ll find a place where
duplicates actually ought to be allowed. At that point, you can insert a call to a
modified version of checkNoDuplicateKeys:

checkNoDuplicateKeys :: (MonadError AppError m, Eq k) => [(k, v)] -> m (Map k v)

Now the check cannot be omitted, since its result is actually necessary for the program
to proceed!

This hypothetical scenario highlights two simple ideas:

1. Use a data structure that makes illegal states unrepresentable. Model your
data using the most precise data structure you reasonably can. If ruling out
a particular possibility is too hard using the encoding you are currently using,
consider alternate encodings that can express the property you care about more
easily. Don’t be afraid to refactor.

2. Push the burden of proof upward as far as possible, but no further. Get your
data into the most precise representation you need as quickly as you can. Ideally,
this should happen at the boundary of your system, before any of the data is
acted upon3.

If one particular code branch eventually requires a more precise representation
of a piece of data, parse the data into the more precise representation as soon
as the branch is selected. Use sum types judiciously to allow your datatypes to
reflect and adapt to control flow.

3 Sometimes it is necessary to perform some
kind of authorization before parsing user input to
avoid denial of service attacks, but that’s okay: au-
thorization should have a relatively small surface

area, and it shouldn’t cause any significant modi-
fications to the state of your system.

38

6.6. Recap, reflection, and related reading

In other words, write functions on the data representation you wish you had, not
the data representation you are given. The design process then becomes an exercise
in bridging the gap, often by working from both ends until they meet somewhere in
the middle. Don’t be afraid to iteratively adjust parts of the design as you go, since
you may learn something new during the refactoring process!

Here are a handful of additional points of advice, arranged in no particular order:

• Let your datatypes inform your code, don’t let your code control your datatypes.
Avoid the temptation to just stick a Bool in a record somewhere because it’s
needed by the function you’re currently writing. Don’t be afraid to refactor
code to use the right data representation – the type system will ensure you’ve
covered all the places that need changing, and it will likely save you a headache
later.

• Treat functions that return m () with deep suspicion. Sometimes these are gen-
uinely necessary, as they may perform an imperative effect with no meaningful
result, but if the primary purpose of that effect is raising an error, it’s likely
there’s a better way.

• Don’t be afraid to parse data in multiple passes. Avoiding shotgun parsing just
means you shouldn’t act on the input data before it’s fully parsed, not that you
can’t use some of the input data to decide how to parse other input data. Plenty
of useful parsers are context-sensitive.

• Avoid denormalized representations of data, especially if it’s mutable. Du-
plicating the same data in multiple places introduces a trivially representable
illegal state: the places getting out of sync. Strive for a single source of truth.

– Keep denormalized representations of data behind abstraction bound-
aries. If denormalization is absolutely necessary, use encapsulation to en-
sure a small, trusted module holds sole responsibility for keeping the rep-
resentations in sync.

• Use abstract datatypes to make validators “look like” parsers. Sometimes,
making an illegal state truly unrepresentable is just plain impractical given the
tools Haskell provides, such as ensuring an integer is in a particular range. In
that case, use an abstract newtype with a smart constructor to “fake” a parser
from a validator.

As always, use your best judgement. It probably isn’t worth breaking out singletons
and refactoring your entire application just to get rid of a single error “impossible”
call somewhere – just make sure to treat those situations like the radioactive substance
they are, and handle them with the appropriate care. If all else fails, at least leave a
comment to document the invariant for whoever needs to modify the code next.

6.6. Recap, reflection, and related reading
That’s all, really. Hopefully this blog post proves that taking advantage of the Haskell
type system doesn’t require a PhD, and it doesn’t even require using the latest and

39

https://hackage.haskell.org/package/singletons

6. Parse, don’t validate - Alexis King

greatest of GHC’s shiny new language extensions – though they can certainly some-
times help! Sometimes the biggest obstacle to using Haskell to its fullest is simply
being aware what options are available, and unfortunately, one downside of Haskell’s
small community is a relative dearth of resources that document design patterns and
techniques that have become tribal knowledge.

None of the ideas in this blog post are new. In fact, the core idea – “write total func-
tions” – is conceptually quite simple. Despite that, I find it remarkably challenging to
communicate actionable, practicable details about the way I write Haskell code. It’s
easy to spend lots of time talking about abstract concepts – many of which are quite
valuable! – without communicating anything useful about process. My hope is that
this is a small step in that direction.

Sadly, I don’t know very many other resources on this particular topic, but I do
know of one: I never hesitate to recommend Matt Parson’s fantastic blog post Type
Safety Back and Forth (see section 3). If you want another accessible perspective on
these ideas, including another worked example, I’d highly encourage giving it a read.
For a significantly more advanced take on many of these ideas, I can also recommend
Matt Noonan’s 2018 paper Ghosts of Departed Proofs, which outlines a handful of
techniques for capturing more complex invariants in the type system than I have
described here.

As a closing note, I want to say that doing the kind of refactoring described in this
blog post is not always easy. The examples I’ve given are simple, but real life is often
much less straightforward. Even for those experienced in type-driven design, it can be
genuinely difficult to capture certain invariants in the type system, so do not consider
it a personal failing if you cannot solve something the way you’d like! Consider the
principles in this blog post ideals to strive for, not strict requirements to meet. All that
matters is to try.

40

https://kataskeue.com/gdp.pdf

7. On Ad-hoc Datatypes - Jasper Van
der Jeugt

William Yao:
In a similar vein to preventing algebraic blindness, make your code more read-

able by naming things with datatypes, even ones that only live in a single module.
Defining new dataypes is cheap and easy, so do it!

Original article: [6]

In Haskell, it is extremely easy for the programmer to add a quick datatype. It
does not have to take more than a few lines. This is useful to add auxiliary, ad-hoc
datatypes.

I don’t think this is used enough. Most libraries and code I see use “heavier”
datatypes: canonical and very well-thought-out datatypes, followed by dozens of
instances and related functions. These are of course great to work with, but it doesn’t
have to be a restriction: adding quick datatypes – without all these instances and
auxiliary functions – often makes code easier to read.

The key idea is that, in order to make code as simple as possible, you want to
represent your data as simply as possible. However, the definition of “simple” is not
the same in every context. Sometimes, looking at your data from another perspective
makes specific tasks easier. In those cases, introducing “quick-and-dirty” datatypes
often makes code cleaner.

This blogpost is written in literate Haskell so you should be able to just load it up
in GHCi and play around with it. You can find the raw .lhs file here.

import Control.Monad (forM_)

Let’s look at a quick example. Here, we have a definition of a shopping cart in a fruit
store.

data Fruit = Banana | Apple | Orange
deriving (Show, Eq)

type Cart = [(Fruit, Int)]

And we have a few functions to inspect it.

cartIsHomogeneous :: Cart -> Bool
cartIsHomogeneous [] = True
cartIsHomogeneous ((fruit, _) : xs) = all ((== fruit) . fst) xs

cartTotalItems :: Cart -> Int
cartTotalItems = sum . map snd

41

https://github.com/jaspervdj/jaspervdj/raw/master/posts/2016-05-11-ad-hoc-datatypes.lhs

7. On Ad-hoc Datatypes - Jasper Van der Jeugt

This is very much like code you typically see in Haskell codebases (of course, with
more complex datatypes than this simple example).

The last function we want to add is printing a cart. The exact way we format it
depends on what is in the cart. There are four possible scenarios.

1. The cart is empty.

2. There is a single item in the customers cart and we have some sort of simplified
checkout.

3. The customer buys three or more of the same fruit (and nothing else). In that
case we give out a bonus.

4. None of the above.

This is clearly a good candidate for Haskell’s case statement and guards. Let’s try
that.

printCart :: Cart -> IO ()
printCart cart = case cart of

[] -> putStrLn $ "Your cart is empty"
[(fruit, 1)] -> putStrLn $ "You are buying one " ++ show fruit
_ | cartIsHomogeneous cart && cartTotalItems cart >= 3 -> do

putStrLn $
show (cartTotalItems cart) ++
" " ++ show (fst $ head cart) ++ "s" ++
" for you!"

putStrLn "BONUS GET!"
| otherwise -> do

putStrLn $ "Your cart: "
forM_ cart $ \(fruit, num) ->

putStrLn $ "- " ++ show num ++ " " ++ show fruit

This is not very nice. The business logic is interspersed with the printing code. We
could clean it up by adding additional predicates such as cartIsBonus, but having
too many of these predicates leads to a certain kind of Boolean Blindness.

Instead, it seems much nicer to introduce a temporary type:

data CartView
= EmptyCart
| SingleCart Fruit
| BonusCart Fruit Int
| GeneralCart Cart

This allows us to decompose our printCart into two clean parts: classifying the cart,
and printing it.

cartView :: Cart -> CartView
cartView [] = EmptyCart
cartView [(fruit, 1)] = SingleCart fruit
cartView cart

| cartIsHomogeneous cart && cartTotalItems cart >= 3 =
BonusCart (fst $ head cart) (cartTotalItems cart)

| otherwise = GeneralCart cart

42

https://existentialtype.wordpress.com/2011/03/15/boolean-blindness/

Note that we now have a single location where we classify the cart. This is useful if we
need this information in multiple places. If we chose to solve the problem by adding
additional predicates such has cartIsBonus instead, we would still have to watch out
that we check these predicates in the same order everywhere. Furthermore, if we need
to add a case, we can simply add a constructor to this datatype, and the compiler will
tell us where we need to update our code1.

Our printCart becomes very simple now:

printCart2 :: Cart -> IO ()
printCart2 cart = case cartView cart of

EmptyCart -> putStrLn $ "Your cart is empty"
SingleCart fruit -> putStrLn $ "You are buying one " ++ show fruit
BonusCart fruit n -> do

putStrLn $ show n ++ " " ++ show fruit ++ "s for you!"
putStrLn "BONUS GET!"

GeneralCart items -> do
putStrLn $ "Your cart: "
forM_ items $ \(fruit, num) ->

putStrLn $ "- " ++ show num ++ " " ++ show fruit

Of course, it goes without saying that ad-hoc datatypes that are only used locally
should not be exported from the module – otherwise you end up with a mess again.

1 If you are compiling with -Wall, which is what
you really, really should be doing.

43

7. On Ad-hoc Datatypes - Jasper Van der Jeugt

44

8. Good design and type safety in
Yahtzee - Tom Ellis

William Yao:
A worked example of going from a functional, if difficult-to-maintain piece of

code, to a design where all the invariants are type-checked and there’s no potential
crashes to be found.

One thing that you should take away from this article is just how much of the
refactoring is completely mechanical and required no understanding of the code
at all. This is the biggest thing that people are talking about when they say that
Haskell is “easy to maintain”: it’s possible to make sweeping changes to your code
and improve the design with almost 100% certainty that it will still work without
needing to think about what the code is doing at all.

Original article: [7]

Mark Dominus wrote an article asking how to take advantage of Haskell’s type safety
in a simple dice-rolling simulation function for the game Yahtzee. He added wrapper
types so that one cannot mistakenly apply the function to values that merely have the
correct type “by accident”. He says the result is “unreadable” and “unmaintainable”.
It certainly doesn’t look nice! I’d claim it’s not even of much practical safety benefit
(although I suppose that depends on what the rest of the program looks like).

Mark says:

I don’t claim this code is any good; I was just hacking around exploring the prob-
lem space. But it does do what I wanted.

But we can’t just expect to sprinkle type safety on a bad design and get something
good. Type safety and good design are qualities that evolve symbiotically. By using
type safety merely to make things safer for our callers we miss out on a host of
benefits. Type safety should be used to guide us in the design of our implementations,
which our callers never see. In fact I would argue that Mark is trying to add type
safety in exactly the wrong way.

If there is an interface whose implementation we don’t control then all we can do is
to slap a type safe wrapper on it and be done with it. That is of some benefit. On the
other hand, if we do control the implementation then the type safe wrapper specifies
invariants that we can take advantage of inside the implementation. They can help us
write the implementation.

We should build type safe structures and combinators relevant to our domain and
implement our solution in terms of those. Likewise we should look at our solution
and factor out repeated patterns into type safe structures and combinators relevant to
our domain. This is symbiotic evolution!

45

https://blog.plover.com/prog/haskell/type-markers.html
https://blog.plover.com/prog/haskell/type-markers.html

8. Good design and type safety in Yahtzee - Tom Ellis

Type safety and good design proceed hand-in-hand along the road of implementa-
tion evolution. Type safety nudges us in the direction of good design and good design
nudges us in the direction of type safety. One of the reasons I prefer Haskell to other
languages is that the compiler can enforce the type safety end of this bargain. On
the other hand, there’s no reason a design in Python, say, can’t be guided by “type
safety” in the same sense as a design in Haskell. It’s just that the “type safety” won’t
be checked by any tooling and so there’s no evolutionary pressure in that direction
(Python’s recent type annotations notwithstanding).

Let’s evolve Mark’s program in the direction of good design and see what arises.
In this case, as we’ll see, I’m not sure there’s much to be gained by trying to “add
type safety”. On the other hand, that there is much to be gained by improving the
design guided by considerations of type safety. The design improvements would apply
equally well to an implementation in Python.

I’ve shown the stages of program evolution as diffs. Sometimes they’re easy to read
and sometimes they’re difficult. If anyone knows how to get diffs to render nicely in
Pandoc (perhaps like GitHub renders them) then please please contact me.

8.1. Original implementation
This is the original implementation, before Mark added wrapper types. Most of the
refactorings that I will perform are independent of what the implementation actually
does; they are simply small changes that are obviously correct. Some are not obvi-
ously correct unless you know what the program does, so let’s explain that allRolls
does the following

• takes DiceState (a list of dice values and an Integer n of rolls left to perform),
and also

• takes DiceChoice (a choice of which dice to reroll), and

• returns a list of all the possible rerolls along with an Integer of rolls left to
perform.

Instead of adding wrapper types let’s just try to improve the design and see what
happens.

type DiceChoice = [Bool]
type DiceVals = [Integer]
type DiceState = (DiceVals, Integer)

allRolls :: DiceChoice -> DiceState -> [DiceState]
allRolls [] ([], n) = [([], n-1)]
allRolls [] _ = undefined
allRolls (chosen:choices) (v:vs, n) =

allRolls choices (vs, n-1) >>=
\(roll,_) -> [(d:roll, n-1) | d <- rollList]

where rollList = if chosen then [v] else [1..6]

example =

46

http://web.jaguarpaw.co.uk/~tom/contact/

8.2. Explain the invariant

let diceChoices = [False, True, True, False, False]
diceVals = [6, 4, 4, 3, 1]

in mapM_ print $ allRolls diceChoices (diceVals, 2)

8.2. Explain the invariant
There’s a undefined in there. That is always a red flag. In this case undefined oc-
curs when there are dice we could reroll but we haven’t specifed whether or not to
reroll them: the choice list is too short. Let’s explain that in an error message. It
communicates better to both the end user of the program and the developer.

We don’t need to know what the program does to apply this refactoring but know-
ing it does give us more confidence that we are doing the right thing.

allRolls :: DiceChoice -> DiceState -> [DiceState]allRolls :: DiceChoice -> DiceState -> [DiceState]1
allRolls [] ([], n) = [([], n-1)]allRolls [] ([], n) = [([], n-1)]2
allRolls [] _ = = undefinedallRolls [] _ = undefined3

allRolls (chosen:choices) (v:vs, n) =allRolls (chosen:choices) (v:vs, n) =4
allRolls choices (vs, n-1) >>=allRolls choices (vs, n-1) >>=5

\(roll,_) -> [(d:roll, n-1) \(roll,_) -> [(d:roll, n-1) 6
| d <- rollList]| d <- rollList]7

8
9

allRolls :: DiceChoice -> DiceState -> [DiceState]allRolls :: DiceChoice -> DiceState -> [DiceState]01
allRolls [] ([], n) = [([], n-1)]allRolls [] ([], n) = [([], n-1)]02
allRolls [] _ =allRolls [] _ =03
error "Invariant violated: choices must be same error "Invariant violated: choices must be same 04
length as vals"length as vals"05

allRolls (chosen:choices) (v:vs, n) =allRolls (chosen:choices) (v:vs, n) =06
allRolls choices (vs, n-1) >>=allRolls choices (vs, n-1) >>=07

\(roll,_) -> [(d:roll, n-1) \(roll,_) -> [(d:roll, n-1) 08
| d <- rollList]| d <- rollList]09

10
11

Figure 8.1.: Explain the invariant

8.3. Avoid catch-all pattern
I prefer to have as few overlapping patterns as possible, even “catch-all” (_) patterns.
This is a fairly minor change, but let’s do it anyway. I think it modestly improves the
design.

We don’t need to know what the program does to apply this refactoring.

allRolls :: DiceChoice -> DiceState -> [DiceState]allRolls :: DiceChoice -> DiceState -> [DiceState]1
allRolls [] ([], n) = [([], n-1)]allRolls [] ([], n) = [([], n-1)]2
allRolls [] (_:_, _) =allRolls [] (_:_, _) =3

error "Invariant violated: choices must be same error "Invariant violated: choices must be same 4
length as vals"length as vals"5

6

allRolls :: DiceChoice -> DiceState -> [DiceState]allRolls :: DiceChoice -> DiceState -> [DiceState]1
allRolls [] ([], n) = [([], n-1)]allRolls [] ([], n) = [([], n-1)]2
allRolls [] (_:_, _) =3 allRolls [] (_:_, _) =
error "Invariant violated: choices must be error "Invariant violated: choices must be 4

same length as vals"same length as vals"
allRolls (_:_) ([], _) =

5
6 allRolls (_:_) ([], _) =

error "Invariant violated: choices must be same error "Invariant violated: choices must be same 7
length as vals"length as vals"8

9

Figure 8.2.: Avoid catch-all pattern

8.4. Add another invariant check
There’s actually a missing pattern (which -Wall will pick up). Let’s add it. Another
modest improvement.

Like with the first invariant check, we don’t need to know what the program does
to apply this refactoring but knowing it does give us more confidence that we are
doing the right thing.

47

8. Good design and type safety in Yahtzee - Tom Ellis

allRolls :: DiceChoice -> DiceState -> [DiceState]allRolls :: DiceChoice -> DiceState -> [DiceState]1
allRolls [] ([], n) = [([], n-1)]2 allRolls [] ([], n) = [([], n-1)]
allRolls [] (_:_, _) =allRolls [] (_:_, _) =3

error "Invariant violated: choices must be same error "Invariant violated: choices must be same 4
length as vals"length as vals"5

6

allRolls :: DiceChoice -> DiceState -> [DiceState]allRolls :: DiceChoice -> DiceState -> [DiceState]1
allRolls [] ([], n) = [([], n-1)]2 allRolls [] ([], n) = [([], n-1)]
allRolls [] (_:_, _) =3 allRolls [] (_:_, _) =
error "Invariant violated: choices must be error "Invariant violated: choices must be 4

same length as vals"same length as vals"5
allRolls (_:_) ([], _) =6 allRolls (_:_) ([], _) =
error "Invariant violated: choices must be same error "Invariant violated: choices must be same 7

length as vals"length as vals"8
9

Figure 8.3.: Add another invariant check

8.5. Add pop function
There are two distinct things that allRolls does.

1. It checks the invariant and if the invariant holds extracts relevant inputs.

2. It runs the algorithm on the relevant inputs.

Let’s separate the concerns by adding a pop function that does 1. Note that the inter-
face between pop and allRolls has type safety! Once pop returns, an invalid state is
not possible. allRolls does not change, except to pass its argument through pop.

We don’t need to know what the program does to apply this refactoring.

pop :: DiceChoice
-> DiceVals
-> Maybe ((Bool, Integer), (DiceChoice, DiceVals))

pop [] [] = Nothing
pop (chosen:choices) (v:vs) = Just ((chosen, v), (choices, vs))
pop (_:_) [] = error "Invariant violated: missing val"
pop [] (_:_) = error "Invariant violated: missing choice"

allRolls :: DiceChoice -> DiceState -> [DiceState]
allRolls choices (vs, n) = case pop choices vs of

Nothing -> [([], n-1)]
Just ((chosen, v), (choices, vs)) ->

allRolls choices (vs, n-1) >>=
\(roll,_) -> [(d:roll, n-1) | d <- rollList]

where rollList = if chosen then [v] else [1..6]

8.6. Indicate that a value is unused
This is the first time we have to apply real thinking to the design process. Weirdly, the
n− 1 argument to the recursive call to allRolls is not used in the final result. The
only way I can suggest that one discovers this is to think through how the the code
actually works. Unlike the above changes, this is not just a simple refactoring.

Let’s indicate that the argument is unused by applying an error instead. In a lan-
guage without lazy evaluation you might like to apply some nonsense value like
-999999999 instead, and check that the results of the function call are not nonsense!

When we run this we don’t get a crash, which implies that that argument was
indeed not used.

48

8.7. Prepare to rearrange arguments

allRolls choices (vs, n) = case pop choices vs ofallRolls choices (vs, n) = case pop choices vs of1
Nothing -> [([], n-1)]2 Nothing -> [([], n-1)]
Just ((chosen, v), (choices, vs)) ->Just ((chosen, v), (choices, vs)) ->3
allRolls choices (vs, n-1) >>=allRolls choices (vs, n-1) >>=allRolls choices (vs, n-1) >>=4

\(roll,_) -> [(d:roll, n-1) \(roll,_) -> [(d:roll, n-1) 5
| d <- rollList]| d <- rollList]6

where where 7
rollList = if chosen then [v] else [1..6]rollList = if chosen then [v] else [1..6]8

9

allRolls choices (vs, n) = case pop choices vs ofallRolls choices (vs, n) = case pop choices vs of01
Nothing -> [([], n-1)]02 Nothing -> [([], n-1)]
Just ((chosen, v), (choices, vs)) ->Just ((chosen, v), (choices, vs)) ->03
allRolls choices (vs, error "Didn't expect allRolls choices (vs, error "Didn't expect allRolls choices (vs, error "Didn't expect 04
to use") >>=to use") >>=05

\(roll,_) -> [(d:roll, n-1) \(roll,_) -> [(d:roll, n-1) 06
| d <- rollList]| d <- rollList]07

where where 08
rollList = if chosen then [v] else [1..6]rollList = if chosen then [v] else [1..6]09

10

Figure 8.4.: Indicate that a value is unused

8.7. Prepare to rearrange arguments
Given the observation above I see no reason to package the DiceVals and the Integer
together. Let’s prepare to separate them.

We don’t need to know what the program does to apply this refactoring. We just
have to observe that the DiceVals and the Integer are not really used together.

type DiceChoice = [Bool]type DiceChoice = [Bool]1
type DiceVals = [Integer]type DiceVals = [Integer]2
type DiceState = (DiceVals, Integer)type DiceState = (DiceVals, Integer)3

4
......5

6
allRolls :: DiceChoice -> DiceState -> [DiceState]allRolls :: DiceChoice -> DiceState -> [DiceState]allRolls :: DiceChoice -> DiceState -> [DiceState]7

8

type DiceChoice = [Bool]type DiceChoice = [Bool]1
type DiceVals = [Integer]type DiceVals = [Integer]2

3
......4

5
allRolls :: DiceChoiceallRolls :: DiceChoice6

-> (DiceVals, Integer)-> (DiceVals, Integer)7
-> [(DiceVals, Integer)]-> [(DiceVals, Integer)]8

9

Figure 8.5.: Prepare to rearrange arguments

8.8. Rearrange arguments
Now let’s do the separation of the arguments. The size of the diff makes the change
seem bigger than it is. It is merely passing two arguments instead of a tuple!

We don’t need to know what the program does to apply this refactoring.

allRolls :: DiceChoiceallRolls :: DiceChoice01
-> (DiceVals, Integer)-> (DiceVals, Integer)-> (DiceVals, Integer)-> (DiceVals, Integer)-> (DiceVals, Integer)02

-> [(DiceVals, Integer)]-> [(DiceVals, Integer)]03
allRolls choices (vs, n) = case pop choices vs ofallRolls choices (vs, n) = case pop choices vs ofallRolls choices (vs, n) = case pop choices vs ofallRolls choices (vs, n) = case pop choices vs of04
Nothing -> [([], n-1)]05 Nothing -> [([], n-1)]
Just ((chosen, v), (choices, vs)) ->Just ((chosen, v), (choices, vs)) ->06
allRolls choices (vs, error "Didn't expect to use") allRolls choices (vs, error "Didn't expect to use") allRolls choices (vs, error "Didn't expect to use") allRolls choices (vs, error "Didn't expect to use") 07
>>= \(roll,_) -> [(d:roll, n-1) 08 >>= \(roll,_) -> [(d:roll, n-1)
| d <- rollList]| d <- rollList]09
where where 10
rollList = if chosen then [v] else [1..6]rollList = if chosen then [v] else [1..6]11

12
example =example =13
let diceChoices = [False, True, True, False, False]let diceChoices = [False, True, True, False, False]14

diceVals = [6, 4, 4, 3, 1]diceVals = [6, 4, 4, 3, 1]15
in mapM_ print $ allRolls diceChoices (diceVals, 2)in mapM_ print $ allRolls diceChoices (diceVals, 2)in mapM_ print $ allRolls diceChoices (diceVals, 2)in mapM_ print $ allRolls diceChoices (diceVals, 2)in mapM_ print $ allRolls diceChoices (diceVals, 2)16

17

allRolls :: DiceChoiceallRolls :: DiceChoice01
-> DiceVals-> DiceVals02
-> Integer-> Integer03
-> [(DiceVals, Integer)]-> [(DiceVals, Integer)]04

allRolls choices vs n = case pop choices vs ofallRolls choices vs n = case pop choices vs ofallRolls choices vs n = case pop choices vs ofallRolls choices vs n = case pop choices vs of05
Nothing -> [([], n-1)]06 Nothing -> [([], n-1)]
Just ((chosen, v), (choices, vs)) ->Just ((chosen, v), (choices, vs)) ->07
allRolls choices vs (error "Didn't expect to use") allRolls choices vs (error "Didn't expect to use") allRolls choices vs (error "Didn't expect to use") allRolls choices vs (error "Didn't expect to use") 08
>>= \(roll,_) -> [(d:roll, n-1) 09 >>= \(roll,_) -> [(d:roll, n-1)
| d <- rollList]| d <- rollList]10
where where 11
rollList = if chosen then [v] else [1..6]rollList = if chosen then [v] else [1..6]12

13
example =example =14
let diceChoices = [False, True, True, False, False let diceChoices = [False, True, True, False, False 15

diceVals = [6, 4, 4, 3, 1]diceVals = [6, 4, 4, 3, 1]16
in mapM_ print $ allRolls diceChoices diceVals 2in mapM_ print $ allRolls diceChoices diceVals 2in mapM_ print $ allRolls diceChoices diceVals 217

18

Figure 8.6.: Rearrange arguments

8.9. Rearrange arguments further
Once we have separated DiceVals from the Integer we notice that DiceChoice and
DiceVals seem to naturally belong together. Again the diff makes the change look

49

8. Good design and type safety in Yahtzee - Tom Ellis

bigger than it is. We’re just passing DiceChoice and DiceVals as a tuple rather than
two arguments.

We don’t need to know what the program does to apply this refactoring.

pop :: DiceChoicepop :: DiceChoice01
-> DiceVals-> DiceVals02
-> Maybe ((Bool, Integer), (DiceChoice, DiceVals))-> Maybe ((Bool, Integer), (DiceChoice, DiceVals))03

pop [] [] = Nothingpop [] [] = Nothingpop [] [] = Nothing04 pop [] [] = Nothing
pop (chosen:choices) (v:vs) = Just ((chosen, v),pop (chosen:choices) (v:vs) = Just ((chosen, v),pop (chosen:choices) (v:vs) = Just ((chosen, v),pop (chosen:choices) (v:vs) = Just ((chosen, v),05
(choices, vs))(choices, vs))06

pop (_:_) [] = error "Invariant violated: missing val"pop (_:_) [] = error "Invariant violated: missing val"pop (_:_) [] = error "Invariant violated: missing val"pop (_:_) [] = error "Invariant violated: missing val"07
pop [] (_:_) = error "Invariant violated: missingpop [] (_:_) = error "Invariant violated: missingpop [] (_:_) = error "Invariant violated: missingpop [] (_:_) = error "Invariant violated: missing08
choice"choice"09

10
allRolls :: DiceChoiceallRolls :: DiceChoice11

-> DiceVals-> DiceVals12
-> Integer-> Integer13
-> [(DiceVals, Integer)]-> [(DiceVals, Integer)]14

allRolls choices vs n = case pop choices vs ofallRolls choices vs n = case pop choices vs ofallRolls choices vs n = case pop choices vs ofallRolls choices vs n = case pop choices vs ofallRolls choices vs n = case pop choices vs ofallRolls choices vs n = case pop choices vs of15
Nothing -> [([], n-1)]Nothing -> [([], n-1)]16
Just ((chosen, v), (choices, vs)) ->Just ((chosen, v), (choices, vs)) ->17
allRolls choices vs (error "Didn't expect to use")allRolls choices vs (error "Didn't expect to use")allRolls choices vs (error "Didn't expect to use")allRolls choices vs (error "Didn't expect to use")18
>>= \(roll,_) -> [(d:roll, n-1)>>= \(roll,_) -> [(d:roll, n-1)19
| d <- rollList]| d <- rollList]20
wherewhere21
rollList = if chosen then [v] else [1..6]rollList = if chosen then [v] else [1..6]22

23
example =example =24
let diceChoices = [False, True, True, False, False]let diceChoices = [False, True, True, False, False]25

diceVals = [6, 4, 4, 3, 1]diceVals = [6, 4, 4, 3, 1]26
in mapM_ print $ allRolls diceChoices diceVals 2in mapM_ print $ allRolls diceChoices diceVals 227

28

pop :: (DiceChoice, DiceVals)pop :: (DiceChoice, DiceVals)pop :: (DiceChoice, DiceVals)pop :: (DiceChoice, DiceVals)pop :: (DiceChoice, DiceVals)01

-> Maybe ((Bool, Integer), (DiceChoice, DiceVals))-> Maybe ((Bool, Integer), (DiceChoice, DiceVals))02
pop ([], []) = Nothingpop ([], []) = Nothingpop ([], []) = Nothing03 pop ([], []) = Nothing
pop (chosen:choices, v:vs) = Just ((chosen, v),pop (chosen:choices, v:vs) = Just ((chosen, v),pop (chosen:choices, v:vs) = Just ((chosen, v),pop (chosen:choices, v:vs) = Just ((chosen, v),04
(choices, vs))(choices, vs))05

pop (_:_, []) = error "Invariant violated: missing valpop (_:_, []) = error "Invariant violated: missing valpop (_:_, []) = error "Invariant violated: missing val06 pop (_:_, []) = error "Invariant violated: missing val
pop ([], _:_) = error "Invariant violated: missing chopop ([], _:_) = error "Invariant violated: missing chopop ([], _:_) = error "Invariant violated: missing chopop ([], _:_) = error "Invariant violated: missing chopop ([], _:_) = error "Invariant violated: missing cho07

08
allRolls :: (DiceChoice, DiceVals)allRolls :: (DiceChoice, DiceVals)allRolls :: (DiceChoice, DiceVals)allRolls :: (DiceChoice, DiceVals)allRolls :: (DiceChoice, DiceVals)09

-> Integer-> Integer10
-> [(DiceVals, Integer)]-> [(DiceVals, Integer)]11

allRolls (choices, vs) n = case pop (choices, vs) ofallRolls (choices, vs) n = case pop (choices, vs) ofallRolls (choices, vs) n = case pop (choices, vs) ofallRolls (choices, vs) n = case pop (choices, vs) ofallRolls (choices, vs) n = case pop (choices, vs) ofallRolls (choices, vs) n = case pop (choices, vs) ofallRolls (choices, vs) n = case pop (choices, vs) ofallRolls (choices, vs) n = case pop (choices, vs) ofallRolls (choices, vs) n = case pop (choices, vs) ofallRolls (choices, vs) n = case pop (choices, vs) of12
Nothing -> [([], n-1)]Nothing -> [([], n-1)]13
Just ((chosen, v), (choices, vs)) ->Just ((chosen, v), (choices, vs)) ->14
allRolls (choices, vs) (error "Didn't expect to useallRolls (choices, vs) (error "Didn't expect to useallRolls (choices, vs) (error "Didn't expect to useallRolls (choices, vs) (error "Didn't expect to useallRolls (choices, vs) (error "Didn't expect to useallRolls (choices, vs) (error "Didn't expect to use15
>>= \(roll,_) -> [(d:roll, n-1)>>= \(roll,_) -> [(d:roll, n-1)16
| d <- rollList]| d <- rollList]17
wherewhere18
rollList = if chosen then [v] else [1..6]rollList = if chosen then [v] else [1..6]19

20
example =example =21
let diceChoices = [False, True, True, False, Falselet diceChoices = [False, True, True, False, False22

diceVals = [6, 4, 4, 3, 1]diceVals = [6, 4, 4, 3, 1]23
in mapM_ print $ allRolls (diceChoices, diceVals) 2in mapM_ print $ allRolls (diceChoices, diceVals) 2in mapM_ print $ allRolls (diceChoices, diceVals) 2in mapM_ print $ allRolls (diceChoices, diceVals) 2in mapM_ print $ allRolls (diceChoices, diceVals) 2in mapM_ print $ allRolls (diceChoices, diceVals) 2in mapM_ print $ allRolls (diceChoices, diceVals) 2in mapM_ print $ allRolls (diceChoices, diceVals) 224

25

Figure 8.7.: Rearrange arguments further

8.10. Avoid unpacking tuple
We no longer need to unpack the tuple! We don’t need to know what the program
does to apply this refactoring.

allRolls (choices, vs) n = case pop (choices, vs) ofallRolls (choices, vs) n = case pop (choices, vs) ofallRolls (choices, vs) n = case pop (choices, vs) ofallRolls (choices, vs) n = case pop (choices, vs) of1
Nothing -> [([], n-1)]2 Nothing -> [([], n-1)]
Just ((chosen, v), (choices, vs)) ->Just ((chosen, v), (choices, vs)) ->Just ((chosen, v), (choices, vs)) ->Just ((chosen, v), (choices, vs)) ->3
allRolls (choices, vs) (error "Didn't expect to use")allRolls (choices, vs) (error "Didn't expect to use")allRolls (choices, vs) (error "Didn't expect to use")allRolls (choices, vs) (error "Didn't expect to use")4
>>=>>=5

6

allRolls t n = case pop t ofallRolls t n = case pop t ofallRolls t n = case pop t ofallRolls t n = case pop t of1
Nothing -> [([], n-1)]2 Nothing -> [([], n-1)]
Just ((chosen, v), t) ->Just ((chosen, v), t) ->Just ((chosen, v), t) ->Just ((chosen, v), t) ->3
allRolls t (error "Didn't expect to use") >>=allRolls t (error "Didn't expect to use") >>=allRolls t (error "Didn't expect to use") >>=allRolls t (error "Didn't expect to use") >>=allRolls t (error "Didn't expect to use") >>=4

5

Figure 8.8.: Avoid unpacking tuple

8.11. We don’t use the Integer. Make this structural.
Given that we have an unused argument in the recursive call let’s see if we can change
our design to make this obvious, i.e. make the fact that we don’t use it an essential
part of the structure of the program, not just a property. In this case it amounts to
pairing the rolls with n− 1 after the bulk of the algorithm (allRollsNoN) has finished.

This is the second time we have to actually analyse how our program works rather
than just apply a mechanical translation.

8.12. Introduce a type synonym
Given that DiceChoice and DiceVals seem to belong together let’s add a type syn-
onym (DiceTurn) for that.

50

8.13. Make illegal states unrepresentable

allRolls :: (DiceChoice, DiceVals)allRolls :: (DiceChoice, DiceVals)01
-> Integer-> Integer02
-> [(DiceVals, Integer)]-> [(DiceVals, Integer)]03

allRolls t n = case pop t ofallRolls t n = case pop t ofallRolls t n = case pop t of04
Nothing -> [([], n-1)]Nothing -> [([], n-1)]05

Just ((chosen, v), t) ->Just ((chosen, v), t) ->06
allRolls t (error "Didn't expect to use") allRolls t (error "Didn't expect to use") allRolls t (error "Didn't expect to use") 07
>>= \(roll,_) -> [(d:roll, n-1) >>= \(roll,_) -> [(d:roll, n-1) >>= \(roll,_) -> [(d:roll, n-1) >>= \(roll,_) -> [(d:roll, n-1) >>= \(roll,_) -> [(d:roll, n-1) >>= \(roll,_) -> [(d:roll, n-1) >>= \(roll,_) -> [(d:roll, n-1) >>= \(roll,_) -> [(d:roll, n-1) >>= \(roll,_) -> [(d:roll, n-1) 08
| d <- rollList]| d <- rollList]09
where where 10
rollList = if chosen then [v] else [1..6]rollList = if chosen then [v] else [1..6]11

12

allRolls :: (DiceChoice, DiceVals)allRolls :: (DiceChoice, DiceVals)01
-> Integer-> Integer02
-> [(DiceVals, Integer)]-> [(DiceVals, Integer)]03

allRolls t n = [(vals, n-1) | vals <- allRollsNoN t]allRolls t n = [(vals, n-1) | vals <- allRollsNoN t]allRolls t n = [(vals, n-1) | vals <- allRollsNoN t]04
05

allRollsNoN :: (DiceChoice, DiceVals) -> [DiceVals]allRollsNoN :: (DiceChoice, DiceVals) -> [DiceVals]06
allRollsNoN t = case pop t ofallRollsNoN t = case pop t of07
Nothing -> [[]]08 Nothing -> [[]]
Just ((chosen, v), t) ->Just ((chosen, v), t) ->09
allRollsNoN t >>=allRollsNoN t >>=allRollsNoN t >>=10
\roll -> [d:roll | d <- rollList]\roll -> [d:roll | d <- rollList]\roll -> [d:roll | d <- rollList]\roll -> [d:roll | d <- rollList]\roll -> [d:roll | d <- rollList]11

where where 12
rollList = if chosen then [v] else [1..6]rollList = if chosen then [v] else [1..6]13

14

Figure 8.9.: We don’t use the Integer

We don’t need to know what the program does to apply this refactoring. We just
observe that the pair of things are always used together.

pop :: (DiceChoice, DiceVals)pop :: (DiceChoice, DiceVals)pop :: (DiceChoice, DiceVals)01
-> Maybe ((Bool, Integer), (DiceChoice, DiceVals))-> Maybe ((Bool, Integer), (DiceChoice, DiceVals))02

pop ([], []) = Nothing03 pop ([], []) = Nothing
pop (chosen:choices, v:vs) = Just ((chosen, v),pop (chosen:choices, v:vs) = Just ((chosen, v),04
(choices, vs))(choices, vs))05

pop (_:_, []) = error "Invariant violated: missing val"06 pop (_:_, []) = error "Invariant violated: missing val"
pop ([], _:_) = error "Invariant violated: missingpop ([], _:_) = error "Invariant violated: missing07
choice"choice"08

09
allRolls :: (DiceChoice, DiceVals)allRolls :: (DiceChoice, DiceVals)allRolls :: (DiceChoice, DiceVals)allRolls :: (DiceChoice, DiceVals)allRolls :: (DiceChoice, DiceVals)10

-> Integer-> Integer11
-> [(DiceVals, Integer)]12 -> [(DiceVals, Integer)]

allRolls t n = [(vals, n-1) | vals <- allRollsNoN t]allRolls t n = [(vals, n-1) | vals <- allRollsNoN t]13
14

allRollsNoN :: (DiceChoice, DiceVals) -> [DiceVals]allRollsNoN :: (DiceChoice, DiceVals) -> [DiceVals]allRollsNoN :: (DiceChoice, DiceVals) -> [DiceVals]allRollsNoN :: (DiceChoice, DiceVals) -> [DiceVals]allRollsNoN :: (DiceChoice, DiceVals) -> [DiceVals]allRollsNoN :: (DiceChoice, DiceVals) -> [DiceVals]15
16

type DiceTurn = (DiceChoice, DiceVals)type DiceTurn = (DiceChoice, DiceVals)type DiceTurn = (DiceChoice, DiceVals)01
02

pop :: DiceTurnpop :: DiceTurn03
-> Maybe ((Bool, Integer), DiceTurn)-> Maybe ((Bool, Integer), DiceTurn)04

pop ([], []) = Nothing05 pop ([], []) = Nothing
pop (chosen:choices, v:vs) = Just ((chosen, v),pop (chosen:choices, v:vs) = Just ((chosen, v),06
(choices, vs))(choices, vs))07

pop (_:_, []) = error "Invariant violated: missing val08 pop (_:_, []) = error "Invariant violated: missing val
pop ([], _:_) = error "Invariant violated: missingpop ([], _:_) = error "Invariant violated: missing09
choice"choice"10

11
allRolls :: DiceTurnallRolls :: DiceTurnallRolls :: DiceTurn12

-> Integer-> Integer13
-> [(DiceVals, Integer)]14 -> [(DiceVals, Integer)]

allRolls t n = [(vals, n-1) | vals <- allRollsNoN t]allRolls t n = [(vals, n-1) | vals <- allRollsNoN t]15
16

allRollsNoN :: DiceTurn -> [DiceVals]allRollsNoN :: DiceTurn -> [DiceVals]allRollsNoN :: DiceTurn -> [DiceVals]allRollsNoN :: DiceTurn -> [DiceVals]17
18

Figure 8.10.: Introduce a type synonym

8.13. Make illegal states unrepresentable
Our invariant is that the number of DiceChoices must be the same as the num-
ber of DiceVals. Semantically, we actually want something stronger: each of the
DiceChoices corresponds to exactly one of the DiceVals. In my experience this is
the single most common non-trival failure to structurally enforce program behaviour
(and I’m not the only one to see it).

The fix is to put pairs of dice choice and dice vals in the same list! We can entirely
remove our invariant check. The invariant is enforced by the type.

Consumers will have to change too but they’ll be better off for it! In example I just
zipped the args. It could also be something much better.

8.14. Use uncons
Having done that we see that pop is just the standard function “uncons”. We don’t
need to know what the program does to apply this refactoring.

8.15. Don’t need uncons
Having said that, we don’t actually need uncons. We can just pattern match directly.
We don’t need to know what the program does to apply this refactoring.

51

https://twitter.com/fried_brice/status/1178140883633479680

8. Good design and type safety in Yahtzee - Tom Ellis

type DiceChoice = [Bool]type DiceChoice = [Bool]01
type DiceVals = [Integer]type DiceVals = [Integer]02
type DiceTurn = (DiceChoice, DiceVals)type DiceTurn = (DiceChoice, DiceVals)type DiceTurn = (DiceChoice, DiceVals)03

04
pop :: DiceTurnpop :: DiceTurn05

-> Maybe ((Bool, Integer), DiceTurn)-> Maybe ((Bool, Integer), DiceTurn)06
pop ([], []) = Nothingpop ([], []) = Nothingpop ([], []) = Nothingpop ([], []) = Nothing07
pop (chosen:choices, v:vs) = Just ((chosen, v), pop (chosen:choices, v:vs) = Just ((chosen, v), pop (chosen:choices, v:vs) = Just ((chosen, v), pop (chosen:choices, v:vs) = Just ((chosen, v), pop (chosen:choices, v:vs) = Just ((chosen, v), 08
(choices, vs))(choices, vs))09

pop (_:_, []) = error "Invariant violated: missing pop (_:_, []) = error "Invariant violated: missing 10
val"val"11

pop ([], _:_) = error "Invariant violated: missing pop ([], _:_) = error "Invariant violated: missing 12
choice"choice"13

14
allRolls :: DiceTurnallRolls :: DiceTurn15

-> Integer-> Integer16
17

example =example =18
let diceChoices = [False, True, True, False, False]let diceChoices = [False, True, True, False, False]19

diceVals = [6, 4, 4, 3, 1]diceVals = [6, 4, 4, 3, 1]20
in mapM_ print $ allRolls (diceChoices, diceVals) 2in mapM_ print $ allRolls (diceChoices, diceVals) 2in mapM_ print $ allRolls (diceChoices, diceVals) 221

22

type DiceVals = [Integer]type DiceVals = [Integer]01
type DiceTurn = [(Bool, Integer)]type DiceTurn = [(Bool, Integer)]type DiceTurn = [(Bool, Integer)]02

03
pop :: DiceTurnpop :: DiceTurn04

-> Maybe ((Bool, Integer), DiceTurn)-> Maybe ((Bool, Integer), DiceTurn)05
pop [] = Nothingpop [] = Nothingpop [] = Nothingpop [] = Nothing06
pop (a:as) = Just (a, as)pop (a:as) = Just (a, as)pop (a:as) = Just (a, as)pop (a:as) = Just (a, as)pop (a:as) = Just (a, as)07

08
allRolls :: DiceTurnallRolls :: DiceTurn09

-> Integer-> Integer10
11

example =example =12
let diceChoices = [False, True, True, False, False]let diceChoices = [False, True, True, False, False]13

diceVals = [6, 4, 4, 3, 1]diceVals = [6, 4, 4, 3, 1]14
in mapM_ print $ allRolls in mapM_ print $ allRolls 15
(zip diceChoices diceVals) 2(zip diceChoices diceVals) 216

17

Figure 8.11.: Make illegal states unrepresentable

type DiceVals = [Integer]type DiceVals = [Integer]01
type DiceTurn = [(Bool, Integer)]type DiceTurn = [(Bool, Integer)]02

03
pop :: DiceTurnpop :: DiceTurn04

-> Maybe ((Bool, Integer), DiceTurn)-> Maybe ((Bool, Integer), DiceTurn)05
pop [] = Nothingpop [] = Nothing06
pop (a:as) = Just (a, as)pop (a:as) = Just (a, as)07

08
allRolls :: DiceTurnallRolls :: DiceTurn09

-> Integer-> Integer10
-> [(DiceVals, Integer)]-> [(DiceVals, Integer)]11

allRolls t n = [(vals, n-1) | allRolls t n = [(vals, n-1) | 12
vals <- allRollsNoN t]vals <- allRollsNoN t]13

14
allRollsNoN :: DiceTurn -> [DiceVals]allRollsNoN :: DiceTurn -> [DiceVals]15
allRollsNoN t = case pop t ofallRollsNoN t = case pop t ofallRollsNoN t = case pop t ofallRollsNoN t = case pop t of16

17

import Data.List (uncons)import Data.List (uncons)01
02

type DiceVals = [Integer]type DiceVals = [Integer]03
type DiceTurn = [(Bool, Integer)]type DiceTurn = [(Bool, Integer)]04

05

allRolls :: DiceTurnallRolls :: DiceTurn06
-> Integer-> Integer07
-> [(DiceVals, Integer)]-> [(DiceVals, Integer)]08

allRolls t n = [(vals, n-1) | allRolls t n = [(vals, n-1) | 09
vals <- allRollsNoN t]vals <- allRollsNoN t]10

11
allRollsNoN :: DiceTurn -> [DiceVals]allRollsNoN :: DiceTurn -> [DiceVals]12
allRollsNoN t = case uncons t ofallRollsNoN t = case uncons t ofallRollsNoN t = case uncons t ofallRollsNoN t = case uncons t of13

14

Figure 8.12.: Use uncons

allRollsNoN :: DiceTurn -> [DiceVals]allRollsNoN :: DiceTurn -> [DiceVals]1
allRollsNoN t = case uncons t ofallRollsNoN t = case uncons t ofallRollsNoN t = case uncons t ofallRollsNoN t = case uncons t of2
Nothing -> [[]]Nothing -> [[]]Nothing -> [[]]3
Just ((chosen, v), t) ->Just ((chosen, v), t) ->
Nothing -> [[]]
Just ((chosen, v), t) ->Just ((chosen, v), t) ->Just ((chosen, v), t) ->Just ((chosen, v), t) ->4

5

allRollsNoN :: DiceTurn -> [DiceVals]allRollsNoN :: DiceTurn -> [DiceVals]1
allRollsNoN t = case t ofallRollsNoN t = case t of2
[] -> [[]][] -> [[]]3 [] -> [[]][] -> [[]]
(chosen, v):t ->(chosen, v):t ->(chosen, v):t ->(chosen, v):t ->4

5

Figure 8.13.: Don’t need uncons

52

8.16. Use do notation

8.16. Use do notation
The use of the bind operator (»=) and list comprehension are not particularly clear.
Let’s rewrite it to use do notation. (In fact I recommend defaulting to do notation
over operators unless there’s some compelling readability benefit to using the latter.)

We don’t need to know what the program does to apply this refactoring.

allRollsNoN :: DiceTurn -> [DiceVals]allRollsNoN :: DiceTurn -> [DiceVals]1
allRollsNoN t = case t ofallRollsNoN t = case t of2
[] -> [[]]3
(chosen, v):t ->(chosen, v):t ->4
[] -> [[]]

allRollsNoN t >>=allRollsNoN t >>=allRollsNoN t >>=5
\roll -> [d:roll | d <- rollList]\roll -> [d:roll | d <- rollList]\roll -> [d:roll | d <- rollList]\roll -> [d:roll | d <- rollList]\roll -> [d:roll | d <- rollList]6

7

allRollsNoN :: DiceTurn -> [DiceVals]allRollsNoN :: DiceTurn -> [DiceVals]1
allRollsNoN t = case t ofallRollsNoN t = case t of2
[] -> [[]]3 [] -> [[]]
(chosen, v):t -> do(chosen, v):t -> do(chosen, v):t -> do4
roll <- allRollsNoN troll <- allRollsNoN troll <- allRollsNoN troll <- allRollsNoN t5
d <- rollListd <- rollListd <- rollListd <- rollList6
[d:roll][d:roll]7

8

Figure 8.14.: Use do notation

8.17. Prepare for mapM
We can see from the above that what our program does is takes the head of a list, runs
recursively on the tail, does something to the head, and then puts it back on the tail.
This is a “map” operation. Specifically in this case we are mapping in a monad so
we use mapM. In modern Haskell you’d use traverse, but I’m going to stick to mapM
because traverse does not read so well. (traverse really ought to be called mapA but
people don’t like the idea of that change.)

In this change we just make the function we are mapping take explicit arguments.
We’ll switch to use mapM in the next change. We don’t need to know what the program
does to apply this refactoring.

(chosen, v):t -> do(chosen, v):t -> do1
roll <- allRollsNoN troll <- allRollsNoN t2
d <- rollListd <- rollList3
[d:roll]4 [d:roll]

where where 5
rollList = if chosen then [v] else [1..6]rollList = if chosen then [v] else [1..6]rollList = if chosen then [v] else [1..6]rollList = if chosen then [v] else [1..6]rollList = if chosen then [v] else [1..6]rollList = if chosen then [v] else [1..6]6

7

(chosen, v):t -> do(chosen, v):t -> do1
roll <- allRollsNoN troll <- allRollsNoN t2
d <- rollList (chosen, v)d <- rollList (chosen, v)d <- rollList (chosen, v)3
[d:roll]4
where where 5

[d:roll]

rollList (chosen, v)rollList (chosen, v)rollList (chosen, v)rollList (chosen, v)rollList (chosen, v)6
= if chosen then [v] else [1..6]= if chosen then [v] else [1..6]7

8

Figure 8.15.: Prepare for mapM

8.18. Use mapM
Now we can just use mapM directly. We don’t need to know what the program does to
apply this refactoring but we do need to know the general concept of “mapping” and
the specific implementation mapM. Be careful! This particular “refactoring” actually
reverses the order of effects – the list of dice rolls will come out in a different order.

8.19. Avoid boolean blindness
There’s ambiguity in the type DiceTurn = [(Bool, Integer)]. Does the Bool refer
to whether we keep the dice or to whether we reroll them? There’s no way for me to

53

https://www.reddit.com/r/haskell/comments/68w09h/proposal_to_add_mapa_as_synonym_for_traverse/

8. Good design and type safety in Yahtzee - Tom Ellis

allRollsNoN t = case t ofallRollsNoN t = case t ofallRollsNoN t = case t of01
[] -> [[]]02 [] -> [[]]
(chosen, v):t -> do(chosen, v):t -> do03
roll <- allRollsNoN troll <- allRollsNoN troll <- allRollsNoN t04
d <- rollList (chosen, v)d <- rollList (chosen, v)05
[d:roll][d:roll]06
wherewhere07
rollList (chosen, v) =rollList (chosen, v) =08
if chosen then [v] else [1..6]if chosen then [v] else [1..6]09

10

allRollsNoN =allRollsNoN =allRollsNoN =1
mapM (\(chosen, v) -> if chosenmapM (\(chosen, v) -> if chosen2
then [v]3
else [1..6])
then [v]
else [1..6])else [1..6])4

5

Figure 8.16.: Use mapM

tell without seeing this conditional inside the function:

if chosen then [v] else [1..6]

Ah, so the Bool refers to whether we keep the dice. Perhaps this is written in the
documentation somewhere, but why do I believe that the documentation is kept in
line with the implementation? I want a single source of truth!

Let’s add a type to avoid “boolean blindness”. The type of allRollsBetter still
does not guarantee that the implementation does the right thing with its argument
but it does make any deviation glaringly obvious.

We don’t need to know what the program does to apply this refactoring. It requires
the uncontroversial LambdaCase language extension.

allRollsNoN =allRollsNoN =1
mapM (\(chosen, v) -> if chosenmapM (\(chosen, v) -> if chosen2
then [v]then [v]3
else [1..6])else [1..6])4

5

allRollsNoN = allRollsBetter . map fromTurnallRollsNoN = allRollsBetter . map fromTurnallRollsNoN = allRollsBetter . map fromTurn01
02

data DiceChoice = Keep Integer | Rerolldata DiceChoice = Keep Integer | Reroll03
04

fromTurn :: (Bool, Integer) -> DiceChoicefromTurn :: (Bool, Integer) -> DiceChoice05
fromTurn (chosen, v) = if chosenfromTurn (chosen, v) = if chosen06
then Keep vthen Keep v07
else Rerollelse Reroll08

09
allRollsBetter :: [DiceChoice] -> [DiceVals]allRollsBetter :: [DiceChoice] -> [DiceVals]10
allRollsBetter = mapM $ \caseallRollsBetter = mapM $ \case11
Reroll -> [1..6]Reroll -> [1..6]12
Keep v -> [v]Keep v -> [v]13

14

Figure 8.17.: Avoid boolean blindness

8.20. Keep the better version
Let’s get rid of all vestiges of the old version. What allRolls does could be done
more clearly at the call site. At this point I wouldn’t add wrapper types for “type
safety”. The rest of the program might be sufficiently complex that they would help,
but they certainly don’t add anything in this simple example.

The new version communicates much better. We “map” over our DiceVals list, that
is, apply a function to each element in turn. In this case we’re taking advantage of the
Monad instance for lists, so we use mapM. The function we map simply says

• Do we want to Reroll? If so, the possible results are [1..6]

• Do we want to Keep v? If so, the possible results are just [v]

54

8.20. Keep the better version

{-# LANGUAGE LambdaCase #-}

type DiceVals = [Integer]
data DiceChoice = Keep Integer | Reroll

allRollsBetter :: [DiceChoice] -> [DiceVals]
allRollsBetter = mapM $ \case

Reroll -> [1..6]
Keep v -> [v]

example =
let diceVals = [Reroll, Keep 4, Keep 4, Reroll, Reroll]
in mapM_ print $ allRollsBetter diceVals

Look at allRollsBetter in comparison to the original allRolls!

allRolls :: DiceChoice -> DiceState -> [DiceState]
allRolls [] ([], n) = [([], n-1)]
allRolls [] _ = undefined
allRolls (chosen:choices) (v:vs, n) =

allRolls choices (vs, n-1) >>=
\(roll,_) -> [(d:roll, n-1) | d <- rollList]

where rollList = if chosen then [v] else [1..6]

How did we end up with something so much clearer? We applied a sequence of trans-
formations to improve the design, almost all of which are applicable in any language.
The transformations were partly informed by a notion of “type safety”. Specifically,
we aimed to model our domain using types and functions that make illegal states
unrepresentable.

None of this requires a language like Haskell. It would be good design in Python as
well. One of Python’s weaknesses is that it makes dealing with sum types awkward.
We would have had to take a slightly different approach for the Maybe returned by pop
(probably None or a tuple), the DiceChoice type (probably a pair of classes) and the list
monad (probably just a recursive generator function). Ultimately though, the benefit
of Haskell is not that it allows us to implement well-typed designs, nor particularly
that it forbids us from implementing ill-typed designs. The benefit is that it nudges
us away from poorly-typed, poorly-structured designs and holds our hand as it does so.

55

8. Good design and type safety in Yahtzee - Tom Ellis

56

9. Using our brain less in refactoring
Yahtzee - Tom Ellis

Original article: [8]

Cameron Gera and Taylor Fausak produced a podcast on an article of mine about
good design and typesafety (see section 8) using code from an implementation of the
game Yahtzee. The article is about refactoring code to improve design and how that
goes hand-in-hand with type safety. Intriguingly, listening to others talk about my
article gave me fresh ideas.

At one point in the article we observed that a variable to an argument was unused.
Subsequently we removed it. The only justification given that the removal of the
argument was valid was that we could convince ourselves that it was unused by
looking at the implementation of the function, and that we could insert a run time
check.

Hearing Cameron and Taylor talk about the article made me think again. There
were only two changes to the code that really relied upon understanding what it does;
everything else was mechanical transformation. Both of those changes were to do
with the unused argument.

Einstein said “chalk is cheaper than grey matter”. Can we avoid using “grey matter”
(our brains) to remove the unused argument, instead just relying on “chalk” (mechan-
ical transformations)? The answer is yes! Let’s see how to do it.

9.1. The starting point
We start from the “Add pop function” stage of the previous article. We’ve got a
suspicion that, although the argument n to allRolls is used, the argument n− 1 to
the recursive call is not. How can we transform the code to make that clear?

type DiceChoice = [Bool]
type DiceVals = [Integer]
type DiceState = (DiceVals, Integer)

pop :: DiceChoice
-> DiceVals
-> Maybe ((Bool, Integer), (DiceChoice, DiceVals))

pop [] [] = Nothing
pop (chosen:choices) (v:vs) = Just ((chosen, v), (choices, vs))
pop (_:_) [] = error "Invariant violated: missing val"
pop [] (_:_) = error "Invariant violated: missing choice"

allRolls :: DiceChoice -> DiceState -> [DiceState]

57

https://haskellweekly.news/episode/22.html

9. Using our brain less in refactoring Yahtzee - Tom Ellis

allRolls choices (vs, n) = case pop choices vs of
Nothing -> [([], n-1)]
Just ((chosen, v), (choices, vs)) ->

allRolls choices (vs, n-1) >>=
\(roll,_) -> [(d:roll, n-1) | d <- rollList]

where rollList = if chosen then [v] else [1..6]

example =
let diceChoices = [False, True, True, False, False]

diceVals = [6, 4, 4, 3, 1]
in mapM_ print $ allRolls diceChoices (diceVals, 2)

9.2. Use do-notation
Let’s immediately simplify by using do-notation. In the previous article we left this
stage until later but given that the recursive call is currently part of a »= expression
let’s apply the simplification now.

allRolls :: DiceChoice -> DiceState -> [DiceState]
allRolls choices (vs, n) = case pop choices vs of

Nothing -> [([], n-1)]
Just ((chosen, v), (choices, vs)) -> do

(roll, _) <- allRolls choices (vs, n-1)
[(d:roll, n-1) | d <- rollList]

where rollList = if chosen then [v] else [1..6]

9.3. Observe that both branches pair a list with n-1
If the argument n were not used at all then our job would be much easier. However, it
is used, so let’s try to separate the place it is used from the place where (we believe)
it is not used.

Where is it used? We can see that each branch of the case statement returns a list of
tuples where the second element of each tuple is n− 1. Put another way, each branch
produces a list and then maps the “pair with n− 1” function over it.

I’ll write the “pair with n-1” function as (, n-1) (using the TupleSections exten-
sion). The usual alternative would be to write
x -> (x, n-1) but in this article I want to keep things compact.

allRolls :: DiceChoice -> DiceState -> [DiceState]allRolls :: DiceChoice -> DiceState -> [DiceState]1
allRolls choices (vs, n) = case pop choices vs ofallRolls choices (vs, n) = case pop choices vs of2
Nothing -> [([], n-1)]Nothing -> [([], n-1)]Nothing -> [([], n-1)]3 Nothing -> [([], n-1)]
Just ((chosen, v), (choices, vs)) -> doJust ((chosen, v), (choices, vs)) -> do4
(roll, _) <- allRolls choices (vs, n-1)(roll, _) <- allRolls choices (vs, n-1)5
[(d:roll, n-1) | d <- rollList][(d:roll, n-1) | d <- rollList][(d:roll, n-1) | d <- rollList][(d:roll, n-1) | d <- rollList]6

7

allRolls :: DiceChoice -> DiceState -> [DiceState]allRolls :: DiceChoice -> DiceState -> [DiceState]1
allRolls choices (vs, n) = case pop choices vs ofallRolls choices (vs, n) = case pop choices vs of2
Nothing -> fmap (, n-1) [[]]Nothing -> fmap (, n-1) [[]]Nothing -> fmap (, n-1) [[]]Nothing -> fmap (, n-1) [[]]Nothing -> fmap (, n-1) [[]]3 Nothing -> fmap (, n-1) [[]]
Just ((chosen, v), (choices, vs)) -> doJust ((chosen, v), (choices, vs)) -> do4
(roll, _) <- allRolls choices (vs, n-1)(roll, _) <- allRolls choices (vs, n-1)5
fmap (, n-1) [d:roll | d <- rollList]fmap (, n-1) [d:roll | d <- rollList]fmap (, n-1) [d:roll | d <- rollList]fmap (, n-1) [d:roll | d <- rollList]fmap (, n-1) [d:roll | d <- rollList]fmap (, n-1) [d:roll | d <- rollList]6

7

Figure 9.1.: Observe that both branches pair a list with n-1

58

9.4. Lift fmap outside do

9.4. Lift fmap outside do
Now n is used, we think, just twice, and in each case to map the “pair with n − 1”
function over a list. We’ve made this duplication obvious but we can’t yet remove it.
First we have to lift the fmap outside the do. We use the rule that

do ...
fmap f e

can be rewritten to

fmap f $ do ...
e

Why is this rewriting valid? Informally, a do block is like a procedure, and this
rule says that “applying f and then returning from the procedure” is the same as

“returning from the procedure and then applying f”. Formally, it can be proved using
the monad laws.

This is how the rewriting applies in our case:

Just ((chosen, v), (choices, vs)) -> doJust ((chosen, v), (choices, vs)) -> do1
(roll, _) <- allRolls choices (vs, n-1)2
fmap (, n-1) [d:roll | d <- rollList]
(roll, _) <- allRolls choices (vs, n-1)
fmap (, n-1) [d:roll | d <- rollList]fmap (, n-1) [d:roll | d <- rollList]fmap (, n-1) [d:roll | d <- rollList]3

4

Just ((chosen, v), (choices, vs)) -> fmap (, n-1) $ dJust ((chosen, v), (choices, vs)) -> fmap (, n-1) $ dJust ((chosen, v), (choices, vs)) -> fmap (, n-1) $ dJust ((chosen, v), (choices, vs)) -> fmap (, n-1) $ d1
(roll, _) <- allRolls choices (vs, n-1)2 (roll, _) <- allRolls choices (vs, n-1)
[d:roll | d <- rollList][d:roll | d <- rollList]3

4

Figure 9.2.: Lift fmap outside do

9.5. Combine duplicated functions at top level
Now that both branches of the case statement are fmap (, n-1) of something, we can
apply fmap (, n-1) to the overall case statement instead. Specifically, the rule is that
we can rewrite

case x of
Case1 -> f $ body1
Case2 -> f $ body2

to

f $ case x of
Case1 -> body1
Case2 -> body2

which in our code leads to

9.6. Split function body into separate function
We want to carefully separate the parts of the code for which the value of n matters
from the parts of the code for which the value of n does not matter. To this end we
split the body of allRolls into a separate function called allRollsBody.

59

9. Using our brain less in refactoring Yahtzee - Tom Ellis

allRolls choices (vs, n) = case pop choices vs ofallRolls choices (vs, n) = case pop choices vs ofallRolls choices (vs, n) = case pop choices vs of1
Nothing -> fmap (, n-1) [[]]2 Nothing -> fmap (, n-1) [[]]
Just ((chosen, v), (choices, vs)) ->Just ((chosen, v), (choices, vs)) ->3
fmap (, n-1) $ dofmap (, n-1) $ dofmap (, n-1) $ do4

5

allRolls choices (vs, n) = fmap (, n-1) $allRolls choices (vs, n) = fmap (, n-1) $allRolls choices (vs, n) = fmap (, n-1) $1
case pop choices vs ofcase pop choices vs of2
Nothing -> [[]]3
Just ((chosen, v), (choices, vs)) -> do
Nothing -> [[]]
Just ((chosen, v), (choices, vs)) -> doJust ((chosen, v), (choices, vs)) -> do4

5

Figure 9.3.: Lift fmap outside do

allRolls :: DiceChoice -> DiceState -> [DiceState]allRolls :: DiceChoice -> DiceState -> [DiceState]1
allRolls choices (vs, n) = fmap (, n-1) $ allRolls choices (vs, n) = fmap (, n-1) $ 2
case pop choices vs ofcase pop choices vs ofcase pop choices vs ofcase pop choices vs ofcase pop choices vs of3

4

allRolls :: DiceChoice -> DiceState -> [DiceState]allRolls :: DiceChoice -> DiceState -> [DiceState]1
allRolls choices (vs, n) = fmap (, n-1) $ allRolls choices (vs, n) = fmap (, n-1) $ 2
allRollsBody choices (vs, n)allRollsBody choices (vs, n)allRollsBody choices (vs, n)allRollsBody choices (vs, n)allRollsBody choices (vs, n)3

4
allRollsBody :: DiceChoice -> DiceState -> [DiceVals]allRollsBody :: DiceChoice -> DiceState -> [DiceVals]5
allRollsBody choices (vs, n) = case pop choices vs ofallRollsBody choices (vs, n) = case pop choices vs of6

7

Figure 9.4.: Split function body into separate function

9.7. Substitute definition of allRolls
Now we are in the nice situation that, although we are yet to prove it to our satisfac-
tion, the value of allRollsBody does not depend on its argument n.

However, we’ve ended up with a pair of mutually recursive functions! That’s some-
what unusual. In order to make allRollsBody recurse only on itself we substitute the
definition of allRolls back into allRollsBody. Additionally, that makes allRolls
not recursive at all.

(roll, _) <- allRolls choices (vs, n-1)(roll, _) <- allRolls choices (vs, n-1)1
2

(roll, _) <- fmap (, n-1) $ allRollsBody choices (vs, n-1)(roll, _) <- fmap (, n-1) $ allRollsBody choices (vs, n-1)(roll, _) <- fmap (, n-1) $ allRollsBody choices (vs, n-1)(roll, _) <- fmap (, n-1) $ allRollsBody choices (vs, n-1)(roll, _) <- fmap (, n-1) $ allRollsBody choices (vs, n-1)(roll, _) <- fmap (, n-1) $ allRollsBody choices (vs, n-1)1
2

Figure 9.5.: Substitute definition of allRolls

9.8. Remove redundant pairing
We’re pairing every element of a list with n − 1 and then immediately removing it.
Let’s just avoid the pairing in the first place.

9.9. Generalise type of allRollsBody
Now the magic happens! Our code currently looks like this.

allRolls :: DiceChoice -> DiceState -> [DiceState]
allRolls choices (vs, n) = fmap (, n-1) $ allRollsBody choices (vs, n)

allRollsBody :: DiceChoice -> DiceState -> [DiceVals]
allRollsBody choices (vs, n) = case pop choices vs of

Nothing -> [[]]
Just ((chosen, v), (choices, vs)) -> do

roll <- allRollsBody choices (vs, n-1)
[d:roll | d <- rollList]

where rollList = if chosen then [v] else [1..6]

60

9.10. Remove unused argument

(roll, _) <- fmap (, n-1) $ allRollsBody choices (vs, n-1)(roll, _) <- fmap (, n-1) $ allRollsBody choices (vs, n-1)(roll, _) <- fmap (, n-1) $ allRollsBody choices (vs, n-1)(roll, _) <- fmap (, n-1) $ allRollsBody choices (vs, n-1)(roll, _) <- fmap (, n-1) $ allRollsBody choices (vs, n-1)(roll, _) <- fmap (, n-1) $ allRollsBody choices (vs, n-1)1
2

roll <- allRollsBody choices (vs, n-1)roll <- allRollsBody choices (vs, n-1)roll <- allRollsBody choices (vs, n-1)roll <- allRollsBody choices (vs, n-1)1
2

Figure 9.6.: Remove redundant pairing

Previously we had to use our brains to spot that the Integer argument to the recursive
call was unused. We inserted a run time check to convince ourselves that we were
right. Now we have split the original function into two, only one of which contains a
recursive call. We can see clearly that the only use for the argument n to allRollsBody
is to be modified and passed to the recursive call. The value of that argument is never
used in any other way. From that observation alone we are probably satisfied that we
can remove it.

In fact we can go one step better. We can make a small change to our code so that
we do not even have to inspect the implementation to know that n is unused. The
compiler will check the property for us! However, the check is demonstrated in a
strange way, and if you’re not familiar with it then it will look utterly bizarre.

We generalise the type signature so that the function doesn’t just work for an
Integer but rather for any type of numeric argument a, that is, any type a with
an instance of the Num type class.

allRollsBody :: Num a => DiceChoice -> (DiceVals, a) -> [DiceVals]

Believe it or not, from this type signature alone, without knowing anything about the
implementation, we can conclude that the a argument is not used! How on earth
can we conclude that? It’s because of the parametricity property enjoyed by Haskell’s
type system. Basically, the type signature says that the only operations involving type
a that allRollsBody can use are the ones from the Num type class. Looking at them,
we see that they give us a way to make new as from an Integer (fromInteger) and
ways to combine as to give other as (+, *, etc.). On the other hand, there is no way
that a value of another type can be created from an a. Therefore, the only way that an
argument of type a could be used to affect the result is if the type variable a appears
in the type of the result. The result has type [DiceVals] so it cannot be affected by
the argument of type a!

If that seems baffling to you, do not be despondent. Although parametricity is an
extremely sophisticated property using it in practice becomes second nature. Haskell
programmers use it to great advantage in creating APIs which remain flexible whilst
providing strong guarantees via their type signatures.

9.10. Remove unused argument
One way or another, our program transformations have taken us to a place where
we feel comfortable removing the Integer argument without having to think too hard
about the justification. We can inspect the body and see that the argument is not used
in a way that can affect the result or we can use parametricity to deduce the same
thing. Either way we can remove it.

allRolls :: DiceChoice -> DiceState -> [DiceState]
allRolls choices (vs, n) = fmap (, n-1) $ allRollsBody choices vs

61

https://en.wikipedia.org/wiki/Parametricity
https://www.stackage.org/haddock/lts-13.21/base-4.12.0.0/Prelude.html#t:Num

9. Using our brain less in refactoring Yahtzee - Tom Ellis

allRollsBody :: DiceChoice -> DiceVals -> [DiceVals]
allRollsBody choices vs = case pop choices vs of

Nothing -> [[]]
Just ((chosen, v), (choices, vs)) -> do

roll <- allRollsBody choices vs
[d:roll | d <- rollList]

where rollList = if chosen then [v] else [1..6]

9.11. Conclusion
In the earlier article I said that “the only way I can suggest that one discovers [that
the argument is unused] is to think through how the the code actually works. . . this
is not just a simple refactoring”. I was wrong! There is a small sequence of simple
transformations that improve the code whilst at the same time taking us to a place
where we easily see that the argument is unused. For the latter either we use a
small amount of brainpower to inspect the implementation or we take advantage of
parametricity. This is great! We want to save as much brainpower as possible for the
really hard problems.

A small amount of Haskell knowledge was required but that is because the code is
written in Haskell. Other languages will have their own particular constructs and
equivalent transformations, although if they lack case statements and expression-
valued blocks the transformations might appear a bit more clunky. The only typed-
functional-language-specific concept in this article is parametricity. In this small exam-
ple we were happy to just inspect the body of the function. Parametricity really shines
in more complicated codebases where unrelated, opaque, pieces of functionality are
being combined.

62

10. Weakly Typed Haskell - Michael
Snoyman

William Yao:
A short example of preventing errors by restricting our function inputs. Uses

the streaming library conduit for its example, but should be understandable with-
out knowing too much about it.

Original article: [9]

I was recently doing a minor cleanup of a Haskell codebase. I started off with some
code that looked like this:

runConduitRes $ sourceFile fp .| someConsumer

This code uses Conduit to stream the contents of a file into a consumer function, and
ResourceT to ensure that the code is exception safe (the file is closed regardless of
exceptions). For various reasons (not relevant to our discussion now), I was trying to
reduce usage of ResourceT in this bit of code, and so I instead wrote:

withBinaryFile fp ReadMode $ \h ->
runConduit $ sourceHandle h .| someConsumer

Instead of using ResourceT to ensure exception safety, I used the with (or bracket)
pattern embodied by the withBinaryFile function. This transformation worked very
nicely, and I was able to apply the change to a number of parts of the code base.

However, I noticed an error message from this application a few days later:

/some/long/file/path.txt: hGetBufSome: illegal operation (handle is not
open for reading)

I looked through my code base, and sure enough I found that in one of the places I’d
done this refactoring, I’d written the following instead:

withBinaryFile fp WriteMode $ \h ->
runConduit $ sourceHandle h.| someConsumer

Notice how I used WriteMode instead of ReadMode. It’s a simple mistake, and it’s
obvious when you look at it. The patch to fix this bug was trivial. But I wasn’t
satisfied with fixing this bug. I wanted to eliminate it from happening again.

63

https://haskell-lang.org/library/conduit
https://www.fpcomplete.com/blog/2017/06/understanding-resourcet

10. Weakly Typed Haskell - Michael Snoyman

10.1. A strongly typed language?
Lots of people believe that Haskell is a strongly typed language. Strong typing means
that you catch lots of classes of bugs with the type system itself. (Static typing means
that the type checking occurs at compile time instead of runtime.) I disagree: Haskell
is not a strongly typed language. In fact, my claim is broader:

There’s no such thing as a strongly typed language

Instead, you can write your code in strongly typed or weakly typed style. Some
language features make it easy to make your programs more strongly typed. For
example, Haskell supports:

• Cheap newtype wrappers

• Sum types

• Phantom type arguments

• GADTs

All of these features allow you to more easily add type safety to your code. But here’s
the rub:

You have to add the type safety yourself

If you want to write a program in Haskell that passes string data everywhere and puts
everything in IO, you’re still writing Haskell, but you’re throwing away the potential
for getting extra protections from the compiler.

My withBinaryFile usage is a small-scale example of this. The sourceFile function
I’d been using previously looks roughly like:

sourceFile :: FilePath -> Source (ResourceT IO) ByteString

This says that if you give this function a FilePath, it will give you back a stream of
bytes, and that it requires ResourceT to be present (to register the cleanup function in
the case of an exception). Importantly: there’s no way you could accidentally try to
send data into this file. The type (Source) prevents it. If you did something like:

runConduitRes $ someProducer .| sourceFile "output.txt"

The compiler would complain about the types mismatching, which is exactly what
you want! Now, by contrast, let’s look at the types of withBinaryFile and sourceHandle:

withBinaryFile :: FilePath -> IOMode -> (Handle -> IO a) -> IO a
sourceHandle :: Handle -> Source IO ByteString

The type signature of withBinaryFile uses the bracket pattern, meaning that you
provide it with a function to run while the file is open, and it will ensure that it closes
the file. But notice something about the type of that inner function: Handle -> IO
a. It tells you absolutely nothing about whether the file is opened for reading and
writing!

The question is: how do we protect ourselves from the kinds of bugs this weak
typing allows?

64

10.2. Quarantining weak typing

10.2. Quarantining weak typing
Let’s capture the basic concept of what I was trying to do in my program with a
helper function:

withSourceFile :: FilePath -> (Source IO ByteString -> IO a) -> IO a
withSourceFile fp inner =

withBinaryFile fp ReadMode $ \handle ->
inner $ sourceHandle handle

This function has all of the same weak typing problems in its body as what I wrote
before. However, let’s look at the use site of this function:

withSourceFile fp $ \src -> runConduit $ src .| someConsumer

I definitely can’t accidentally pass WriteMode instead, and if I try to do something
like:

withSourceFile fp $ \src -> runConduit $ someProducer .| src

I’ll get a compile time error. In other words:

While my function internally is weakly typed, externally it’s strongly typed

This means that all users of my functions get the typing guarantees I’ve been hoping
to provide. We can’t eliminate the possibility of weak typing errors completely, since
the systems we’re running on are ultimately weakly typed. After all, at the OS level, a
file descriptor is just an int, and tells you nothing about whether it’s read mode, write
mode, or even a pointer to some random address in memory.

Instead, our goal in writing strongly typed programs is to contain as much of the
weak typing to helper functions as possible, and expose a strongly typed interface for
most of our program. By using withSourceFile instead of withBinaryFile, I now
have just one place in my code I need to check the logic of using ReadMode correctly,
instead of dozens.

10.3. Discipline and best practices
The takeaway here is that you can always shoot yourself in the foot. Languages like
Haskell are not some piece of magic that will eliminate bugs. You need to follow
through with discipline in using the languages well if you want to get the benefits of
features like strong typing.

You can use the some kind of technique in many languages. But if you use a
language like Haskell with a plethora of features geared towards easy safety, you’ll
be much more likely to follow through on it.

65

10. Weakly Typed Haskell - Michael Snoyman

66

11. The Trouble with Typed Errors -
Matt Parsons

William Yao:
Or: “Avoiding a monolithic error type”
Good, but not necessary when starting out. While the approach described here

is pretty cool, it’s also somewhat heavyweight. You’ll have to decide for yourself
whether it’s worth the extra cognitive overhead. Truthfully it can often be quite
reasonable to have a single, monolithic sum type for all your application/library
errors.

Original article: [10]

You, like me, program in either Haskell, or Scala, or F#, or Elm, or PureScript, and
you don’t like runtime errors. They’re awful and nasty! You have to debug them, and
they’re not represented in the types. Instead, we like to use Either (or something
isomorphic) to represent stuff that might fail:

data Either l r = Left l | Right r

Either has a Monad instance, so you can short-circuit an Either l r computation with
an l value, or bind it to a function on the r value.

So, we take our unsafe, runtime failure functions:

head :: [a] -> a
lookup :: k -> Map k v -> v
parse :: String -> Integer

and we use informative error types to represent their possible failures:

data HeadError = ListWasEmpty

head :: [a] -> Either HeadError a

data LookupError = KeyWasNotPresent

lookup :: k -> Map k v -> Either LookupError v

data ParseError
= UnexpectedChar Char String
| RanOutOfInput

parse :: String -> Either ParseError Integer

67

11. The Trouble with Typed Errors - Matt Parsons

Except, we don’t really use types like HeadError or LookupError. There’s only one
way that head or lookup could fail. So we just use Maybe instead. Maybe a is just
like using Either () a – there’s only one possible Left () value, and there’s only
one possible Nothing value. (If you’re unconvinced, write newtype Maybe a = Maybe
(Either () a), derive all the relevant instances, and try and detect a difference be-
tween this Maybe and the stock one).

But, Maybe isn’t great – we’ve lost information! Suppose we have some computation:

foo :: String -> Maybe Integer
foo str = do

c <- head str
r <- lookup str strMap
eitherToMaybe (parse (c : r))

Now, we try it on some input, and it gives us Nothing back. Which step failed? We
actually can’t know that! All we can know is that something failed.

So, let’s try using Either to get more information on what failed. Can we just write
this?

foo :: String -> Either ??? Integer
foo str = do

c <- head str
r <- lookup str strMap
parse (c : r)

Unfortunately, this gives us a type error. We can see why by looking at the type of »=:

(>>=) :: (Monad m) => m a -> (a -> m b) -> m b

The type variable m must be an instance of Monad, and the type m must be exactly the
same for the value on the left and the function on the right. Either LookupError and
Either ParseError are not the same type, and so this does not type check.

Instead, we need some way of accumulating these possible errors. We’ll introduce
a utility function mapLeft that helps us:

mapLeft :: (l -> l') -> Either l r -> Either l' r
mapLeft f (Left l) = Left (f l)
mapLeft _ r = r

Now, we can combine these error types:

foo :: String
-> Either

(Either HeadError (Either LookupError ParseError))
Integer

foo str = do
c <- mapLeft Left (head str)
r <- mapLeft (Right . Left) (lookup str strMap)
mapLeft (Right . Right) (parse (c : r))

68

There! Now we can know exactly how and why the computation failed. Unfortunately,
that type is a bit of a monster. It’s verbose and all the mapLeft boilerplate is annoying.

At this point, most application developers will create a “application error” type,
and they’ll just shove everything that can go wrong into it.

data AllErrorsEver
= AllParseError ParseError
| AllLookupError LookupError
| AllHeadError HeadError
| AllWhateverError WhateverError
| FileNotFound FileNotFoundError
| etc...

Now, this slightly cleans up the code:

foo :: String -> Either AllErrorsEver Integer
foo str = do

c <- mapLeft AllHeadError (head str)
r <- mapLeft AllLookupError (lookup str strMap)
mapLeft AllParseError (parse (c : r))

However, there’s a pretty major problem with this code. foo is claiming that it can
“throw” all kinds of errors – it’s being honest about parse errors, lookup errors, and
head errors, but it’s also claiming that it will throw if files aren’t found, “whatever”
happens, and etc. There’s no way that a call to foo will result in FileNotFound, because
foo can’t even do IO! It’s absurd. The type is too large! And I have written about
keeping your types small (see 4) and how wonderful it can be for getting rid of bugs.

Suppose we want to handle foo’s error. We call the function, and then write a case
expression like good Haskellers:

case foo "hello world" of
Right val ->

pure val
Left err ->

case err of
AllParseError parseError ->

handleParseError parseError
AllLookupError lookupErr ->

handleLookupError
AllHeadError headErr ->

handleHeadError
_ ->

error "impossible?!?!?!"

Unfortunately, this code is brittle to refactoring! We’ve claimed to handle all errors,
but we’re really not handling many of them. We currently “know” that these are the
only errors that can happen, but there’s no compiler guarantee that this is the case.
Someone might later modify foo to throw another error, and this case expression
will break. Any case expression that evaluates any result from foo will need to be
updated.

69

11. The Trouble with Typed Errors - Matt Parsons

The error type is too big, and so we introduce the possibility of mishandling it.
There’s another problem. Let’s suppose we know how to handle a case or two of the
error, but we must pass the rest of the error cases upstream:

bar :: String -> Either AllErrorsEver Integer
bar str =

case foo str of
Right val -> Right val
Left err ->

case err of
AllParseError pe ->

Right (handleParseError pe)
_ ->

Left err

We know that AllParseError has been handled by bar, because – just look at it!
However, the compiler has no idea. Whenever we inspect the error content of bar,
we must either a) “handle” an error case that has already been handled, perhaps
dubiously, or b) ignore the error, and desperately hope that no underlying code ever
ends up throwing the error.

Are we done with the problems on this approach? No! There’s no guarantee that I
throw the right error!

head :: [a] -> Either AllErrorsEver a
head (x:xs) = Right x
head [] = Left (AllLookupError KeyWasNotPresent)

This code typechecks, but it’s wrong, because LookupError is only supposed to be
thrown by lookup! It’s obvious in this case, but in larger functions and codebases, it
won’t be so clear.

11.1. Monolithic error types are bad
So, having a monolithic error type has a ton of problems. I’m going to make a claim
here:

All error types should have a single constructor

That is, no sum types for errors. How can we handle this?
Let’s maybe see if we can make Either any nicer to use. We’ll define a few helpers:

type (+) = Either
infixr + 5

l :: l -> Either l r
l = Left

r :: r -> Either l r
r = Right

70

11.2. Boilerplate be gone!

Now, let’s refactor that uglier Either code with these new helpers:

foo :: String
-> Either

(HeadError + LookupError + ParseError)
Integer

foo str = do
c <- mapLeft l (head str)
r <- mapLeft (r . l) (lookup str strMap)
mapLeft (r . r) (parse (c : r))

Well, the syntax is nicer. We can case over the nested Either in the error branch to
eliminate single error cases. It’s easier to ensure we don’t claim to throw errors we
don’t – after all, GHC will correctly infer the type of foo, and if GHC infers a type
variable for any +, then we can assume that we’re not using that error slot, and can
delete it.

Unfortunately, there’s still the mapLeft boilerplate. And expressions which you’d
really want to be equal, aren’t.

x :: Either (HeadError + LookupError) Int
y :: Either (LookupError + HeadError) Int

The values x and y are isomorphic, but we can’t use them in a do block because they’re
not exactly equal. If we add errors, then we must revise all mapLeft code, as well as
all case expressions that inspect the errors. Fortunately, these are entirely compiler-
guided refactors, so the chance of messing them up is small. However, they contribute
significant boilerplate, noise, and busywork to our program.

11.2. Boilerplate be gone!
Well, turns out, we can get rid of the order dependence and boilerplate with type
classes! The most powerful approach is to use “classy prisms” from the lens package.
Let’s translate our types from concrete values to prismatic ones:

-- Concrete:
head :: [a] -> Either HeadError a

-- Prismatic:
head :: AsHeadError err => [a] -> Either err a

-- Concrete:
lookup :: k -> Map k v -> Either LookupError v

-- Prismatic:
lookup

:: (AsLookupError err)
=> k -> Map k v -> Either err v

71

11. The Trouble with Typed Errors - Matt Parsons

Now, type class constraints don’t care about order – (Foo a, Bar a) => a and (Bar
a, Foo a) => a are exactly the same thing as far as GHC is concerned. The AsXXX
type classes will automatically provide the mapLeft stuff for us, so now our foo func-
tion looks a great bit cleaner:

foo :: (AsHeadError err, AsLookupError err, AsParseError err)
=> String -> Either err Integer

foo str = do
c <- head str
r <- lookup str strMap
parse (c : r)

This appears to be a significant improvement over what we’ve had before! And, most
of the boilerplate with the AsXXX classes is taken care of via Template Haskell:

makeClassyPrisms ''ParseError
-- this line generates the following:

class AsParseError a where
_ParseError :: Prism' a ParseError
_UnexpectedChar :: Prism' a (Char, String)
_RanOutOfInput :: Prism' a ()

instance AsParseError ParseError where
-- etc...

However, we do have to write our own boilerplate when we eventually want to con-
cretely handle these types. We may end up writing a huge AppError that all of these
errors get injected into.

There’s one major, fatal flaw with this approach. While it composes very nicely, it
doesn’t decompose at all! There’s no way to catch a single case and ensure that it’s
handled. The machinery that prisms give us don’t allow us to separate out a single
constraint, so we can’t pattern match on a single error.

Once again, our types become ever larger, with all of the problems that entails.

11.3. Generics to the rescue!
What we really want is:

• Order independence

• No boilerplate

• Easy composition

• Easy decomposition

In PureScript or OCaml, you can use open variant types to do this flawlessly. Haskell
doesn’t have open variants, and the attempts to mock them end up quite clumsy to
use in practice.

72

11.4. Mostly?

I’m happy to say that the entire job is handled quite nicely with the amazing
generic-lens package. I created a gist that demonstrates their usage, but the magic
comes down to this simple fact: there’s an instance of the prismatic AsType class for
Either, which allows you to “pluck” a constraint off. This satisfies all of the things I
wanted in my list, and we can consider representing errors mostly solved.

11.4. Mostly?
Well, ExceptT e IO a still imposes a significant runtime performance hit, and asyn-
chronous exceptions aren’t considered here. A bifunctor IO type like newtype BIO
err a = BIO (IO a) which carries the type class constraints of the errors it contains
is promising, but I haven’t been able to write a satisfying interface to this yet.

I also haven’t used this technique in a large codebase yet, and I don’t know how
it scales. And the technique does require you to be comfortable with lens, which is
a fairly high bar for training new folks on. I’m sure that API improvements could
be made to make this style more accessible and remove some of the lens knowledge
prerequisites.

73

https://gist.github.com/parsonsmatt/880fbf79eaad6ed863786c6c02f8ddc9

11. The Trouble with Typed Errors - Matt Parsons

74

12. Type-Directed Code Generation -
Sandy Maguire

William Yao:
This post is entirely reasonable to skip, as it requires being familiar with some

of GHC’s esoteric type extensions. Still, it’s a cool introduction to using the more
powerful features of the language to make interacting with a complex protocol
(gRPC) less error-prone.

Original article: [11]

12.1. Context
At work recently I’ve been working on a library to get idiomatic gRPC support in our
Haskell project. I’m quite proud of how it’s come out, and thought it’d make a good
topic for a blog post. The approach demonstrates several type-level techniques that in
my opinion are under-documented and exceptionally useful in using the type-system
to enforce external contracts.

Thankfully the networking side of the library had already been done for me by
Awake Security, but the interface feels like a thin-wrapper on top of C bindings. I’m
very, very grateful that it exists, but I wouldn’t expect myself to be able to use it in
anger without causing an uncaught type error somewhere along the line. I’m sure
I’m probably just using it wrong, but the library’s higher-level bindings all seemed to
be targeted at Awake’s implementation of protobuffers.

We wanted a version that would play nicely with proto-lens, which, at time of
writing, has no official support for describing RPC services via protobuffers. If you’re
not familiar with proto-lens, it generates Haskell modules containing idiomatic types
and lenses for protobuffers, and can be used directly in the build chain.

So the task was to add support to proto-lens for generating interfaces to RPC ser-
vices defined in protobuffers.

My first approach was to generate the dumbest possible thing that could work – the
idea was to generate records containing fields of the shape Request -> IO Response.
Of course, with a network involved there is a non-negligible chance of things going
wrong, so this interface should expose some means of dealing with errors. However,
the protobuffer spec is agnostic about the actual RPC backend used, and so it wasn’t
clear how to continue without assuming anything about the particulars behind errors.

More worrisome, however, was that RPCs can be marked as streaming – on the
side of the client, server, or both. This means, for example, that a method marked as
server-streaming has a different interface on either side of the network:

serverSide :: Request -> (Response -> IO ()) -> IO ()
clientSide :: Request -> (IO (Maybe Response) -> IO r) -> IO r

75

https://github.com/awakesecurity/gRPC-haskell
https://github.com/google/proto-lens

12. Type-Directed Code Generation - Sandy Maguire

This is problematic. Should we generate different records corresponding to which
side of the network we’re dealing with? An early approach I had was to parameterize
the same record based on which side of the network, and use a type family to get the
correct signature:

{-# LANGUAGE DataKinds #-}

data NetworkSide = Client | Server

data MyService side = MyService
{ runServerStreaming :: ServerStreamingType side Request Response
}

type family ServerStreamingType (side :: NetworkSide) input output where
ServerStreamingType Server input output =

input -> (output -> IO ()) -> IO ()

ServerStreamingType Client input output =
forall r. input -> (IO (Maybe output) -> IO r) -> IO r

This seems like it would work, but in fact the existence of the forall on the client-side
is “illegally polymorphic” in GHC’s eyes, and it will refuse to compile such a thing.
Giving it up would mean we wouldn’t be able to return arbitrarily-computed values
on the client-side while streaming data from the server. Users of the library might
be able to get around it by invoking IORefs or something, but it would be ugly and
non-idiomatic.

So that, along with wanting to be backend-agnostic, made this approach a no-go.
Luckily, my brilliant coworker Judah Jacobson (who is coincidentally also the author
of proto-lens), suggested we instead generate metadata for RPC services in proto-lens,
and let backend library code figure it out from there.

With all of that context out of the way, we’re ready to get into the actual meat of the
post. Finally.

12.2. Generating Metadata
According to the spec, a protobuffer service may contain zero or more RPC methods.
Each method has a request and response type, either of which might be marked as
streaming.

While we could represent this metadata at the term-level, that won’t do us any
favors in terms of getting type-safe bindings to this stuff. And so, we instead turn to
TypeFamilies, DataKinds and GHC.TypeLits.

For reasons that will become clear later, we chose to represent RPC services via
types, and methods in those services as symbols (type-level strings). The relevant
typeclasses look like this:

class Service s where
type ServiceName s :: Symbol

class HasMethod s (m :: Symbol) where

76

https://github.com/judah
https://developers.google.com/protocol-buffers/docs/reference/proto3-spec

12.3. The Client Side

type MethodInput s m :: *
type MethodOutput s m :: *
type IsClientStreaming s m :: Bool
type IsServerStreaming s m :: Bool

For example, the instances generated for the RPC service:

service MyService {
rpc BiDiStreaming(stream Request) returns(stream Response);

}

would look like this:

data MyService = MyService

instance Service MyService where
type ServiceName MyService = "myService"

instance HasMethod MyService "biDiStreaming" where
type MethodInput MyService "biDiStreaming" = Request
type MethodOutput MyService "biDiStreaming" = Response
type IsClientStreaming MyService "biDiStreaming" = 'True
type IsServerStreaming MyService "biDiStreaming" = 'True

You’ll notice that these typeclasses perfectly encode all of the information we had in
the protobuffer definition. The idea is that with all of this metadata available to them,
specific backends can generate type-safe interfaces to these RPCs. We’ll walk through
the implementation of the gRPC bindings together.

12.3. The Client Side
The client side of things is relatively easy. We can the HasMethod instance directly:

runNonStreamingClient
:: HasMethod s m
=> s
-> Proxy m
-> MethodInput s m
-> IO (Either GRPCError (MethodOutput s m))

runNonStreamingClient = -- call the underlying gRPC code

runServerStreamingClient
:: HasMethod s m
=> s
-> Proxy m
-> MethodInput s m
-> (IO (Either GRPCError (Maybe (MethodOutput s m)) -> IO r)
-> IO r

runServerStreamingClient = -- call the underlying gRPC code

-- etc

77

12. Type-Directed Code Generation - Sandy Maguire

This is a great start! We’ve got the interface we wanted for the server-streaming code,
and our functions are smart enough to require the correct request and response types.

However, there’s already some type-unsafety here; namely that nothing stops us
from calling runNonStreamingClient on a streaming method, or other such silly
things.

Thankfully the fix is quite easy – we can use type-level equality to force callers to
be attentive to the streaming-ness of the method:

runNonStreamingClient
:: (HasMethod s m

, IsClientStreaming s m ~ 'False
, IsServerStreaming s m ~ 'False
)

=> s
-> Proxy m
-> MethodInput s m
-> IO (Either GRPCError (MethodOutput s m))

runServerStreamingClient
:: (HasMethod s m

, IsClientStreaming s m ~ 'False
, IsServerStreaming s m ~ 'True
)

=> s
-> Proxy m
-> MethodInput s m
-> (IO (Either GRPCError (Maybe (MethodOutput s m)) -> IO r)
-> IO r

-- et al.

Would-be callers attempting to use the wrong function for their method will now be
warded off by the type-system, due to the equality constraints being unable to be
discharged. Success!

The actual usability of this code leaves much to be desired (it requires being passed
a proxy, and the type errors are absolutely disgusting), but we’ll circle back on improv-
ing it later. As it stands, this code is type-safe, and that’s good enough for us for the
time being.

12.4. The Server Side

12.4.1. Method Discovery
Prepare yourself (but don’t panic!): the server side of things is significantly more
involved.

In order to run a server, we’re going to need to be able to handle any sort of request
that can be thrown at us. That means we’ll need an arbitrary number of handlers,
depending on the service in question. An obvious thought would be to generate a
record we could consume that would contain handlers for every method, but there’s

78

12.4. The Server Side

no obvious place to generate such a thing. Recall: proto-lens can’t, since such a type
would be backend-specific, and so our only other strategy down this path would be
Template Haskell. Yuck.

Instead, recall that we have an instance of HasMethod for every method on Service
s – maybe we could exploit that information somehow? Unfortunately, without Tem-
plate Haskell, there’s no way to discover typeclass instances.

But that doesn’t mean we’re stumped. Remember that we control the code gen-
eration, and so if the representation we have isn’t powerful enough, we can change
it. And indeed, the representation we have isn’t quite enough. We can go from a
HasMethod s m to its Service s, but not the other way. So let’s change that.

We change the Service class slightly:

class Service s where
type ServiceName s :: Symbol
type ServiceMethods s :: [Symbol]

If we ensure that the ServiceMethods s type family always contains an element for
every instance of HasService, we’ll be able to use that info to discover our instances.
For example, our previous MyService will now get generated thusly:

data MyService = MyService

instance Service MyService where
type ServiceName MyService = "myService"
type ServiceMethods MyService = '["biDiStreaming"]

instance HasMethod MyService "biDiStreaming" where
type MethodInput MyService "biDiStreaming" = Request
type MethodOutput MyService "biDiStreaming" = Response
type IsClientStreaming MyService "biDiStreaming" = 'True
type IsServerStreaming MyService "biDiStreaming" = 'True

and we would likewise add the m for any other HasMethod MyService m instances if
they existed.

This seems like we can now use ServiceMethods s to get a list of methods, and then
somehow type-level map over them to get the HasMethod s m constraints we want.

And we almost can, except that we haven’t told the type-system that ServiceMethods
s relates to HasService s m instances in this way. We can add a superclass constraint
to Service to do this:

class HasAllMethods s (ServiceMethods s) => Service s where
-- as before

But what is this HasAllMethods thing? It’s a specialized type-level map which turns
our list of methods into a bunch of constraints proving we have HasMethod s m for
every m in that promoted list.

class HasAllMethods s (xs :: [Symbol])

instance HasAllMethods s '[]
instance (HasMethod s x, HasAllMethods s xs) => HasAllMethods s (x ': xs)

79

12. Type-Directed Code Generation - Sandy Maguire

We can think of xs here as the list of constraints we want. Obviously if we don’t
want any constraints (the ‘[] case), we trivially have all of them. The other case is
induction: if we have a non-empty list of constraints we’re looking for, that’s the same
as looking for the tail of the list, and having the constraint for the head of it.

Read through these instances a few times; make sure you understand the approach
before continuing, because we’re going to keep using this technique in scarier and
scarier ways.

With this HasAllMethods superclass constraint, we can now convince ourselves (and,
more importantly, GHC), that we can go from a Service s constraint to all of its
HasMethod s m constraints. Cool!

12.4.2. Typing the Server
We return to thinking about how to actually run a server. As we’ve discussed, such a
function will need to be able to handle every possible method, and, unfortunately, we
can’t pack them into a convenient data structure.

Our actual implementation of such a thing might take a list of handlers. But recall
that each handler has different input and output types, as well as different shapes
depending on which bits of it are streaming. We can make this approach work by
existentializing away all of the details.

While it works as far as the actual implementation of the underlying gRPC goes,
we’re left with a great sense of uneasiness. We have no guarantees that we’ve provided
a handler for every method, and the very nature of existentialization means we have
absolutely no guarantees that any of these things are the right ype.

Our only recourse is to somehow use our Service s constraint to put a prettier
facade in front of this ugly-if-necessary implementation detail.

The actual interface we’ll eventually provide will, for example, for a service with
two methods, look like this:

runServer :: HandlerForMethod1 -> HandlerForMethod2 -> IO ()

Of course, we can’t know a priori how many methods there will be (or what type
their handlers should have, for that matter). We’ll somehow need to extract this
information from Service s – which is why we previously spent so much effort on
making the methods discoverable.

The technique we’ll use is the same one you’ll find yourself using again and again
when you’re programming at the type-level. We’ll make a typeclass with an associated
type family, and then provide a base case and an induction case.

class HasServer s (xs :: [Symbol]) where
type ServerType s xs :: *

We need to make the methods xs explicit as parameters in the typeclass, so that we
can reduce them. The base case is simple – a server with no more handlers is just an
IO action:

instance HasServer s '[] where
type ServerType s '[] = IO ()

The induction case, however, is much more interesting:

80

http://reasonablypolymorphic.com/existentialization/

12.4. The Server Side

instance (HasMethod s x
, HasMethodHandler s x
, HasServer s xs
) => HasServer s (x ': xs) where

type ServerType s (x ': xs) = MethodHandler s x -> ServerType s xs

The idea is that as we pull methods x off our list of methods to handle, we build a
function type that takes a value of the correct type to handle method x, which will
take another method off the list until we’re out of methods to handle. This is exactly
a type-level fold over a list.

The only remaining question is “what is this MethodHandler thing?” It’s going to
have to be a type family that will give us back the correct type for the handler under
consideration. Such a type will need to dispatch on the streaming variety as well as
the request and response, so we’ll define it as follows, and go back and fix HasServer
later.

class HasMethodHandler input output (cs :: Bool) (ss :: Bool) where
type MethodHandler input output cs ss :: *

cs and ss refer to whether we’re looking for client-streaming and/or server-streaming
types, respectively.

Such a thing could be a type family, but isn’t because we’ll need its class-ness later
in order to actually provide an implementation of all of this stuff. We provide the
following instances:

-- non-streaming
instance HasMethodHandler input output 'False 'False where

type MethodHandler input output 'False 'False =
input -> IO output

-- server-streaming
instance HasMethodHandler input output 'False 'True where

type MethodHandler input output 'False 'True =
input -> (output -> IO ()) -> IO ()

-- etc for client and bidi streaming

With MethodHandler now powerful enough to give us the types we want for handlers,
we can go back and fix HasServer so it will compile again:

instance (HasMethod s x
, HasMethodHandler (MethodInput s x)

(MethodOutput s x)
(IsClientStreaming s x)
(IsServerStreaming s x)

, HasServer s xs
) => HasServer s (x ': xs) where

type ServerType s (x ': xs)
= MethodHandler (MethodInput s x)

81

12. Type-Directed Code Generation - Sandy Maguire

(MethodOutput s x)
(IsClientStreaming s x)
(IsServerStreaming s x)

-> ServerType s xs

It’s not pretty, but it works! We can convince ourselves of this by asking ghci:

ghci> :kind! ServerType MyService (ServiceMethods MyService)

(Request -> (Response -> IO ()) -> IO ()) -> IO () :: *

and, if we had other methods defined for MyService, they’d show up here with the
correct handler type, in the order they were listed in ServiceMethods MyService.

12.4.3. Implementing the Server
Our ServerType family now expands to a function type which takes a handler value
(of the correct type) for every method on our service. That turns out to be more than
half the battle – all we need to do now is to provide a value of this type.

The generation of such a value is going to need to proceed in perfect lockstep with
the generation of its type, so we add to the definition of HasServer:

class HasServer s (xs :: [Symbol]) where
type ServerType s xs :: *
runServerImpl :: [AnyHandler] -> ServerType s xs

What is this [AnyHandler] thing, you might ask. It’s an explicit accumulator for
existentialized handlers we’ve collected during the fold over xs. It’ll make sense when
we look at the induction case. For now, however, the base case is trivial as always:

instance HasServer s '[] where
type ServerType s '[] = IO ()
runServerImpl handlers = runGRPCServer handlers

where runGRPCServer is the underlying server provided by Awake’s library. We move
to the induction case:

instance (HasMethod s x
, HasMethodHandler (MethodInput s x)

(MethodOutput s x)
(IsClientStreaming s x)
(IsServerStreaming s x)

, HasServer s xs
) => HasServer s (x ': xs) where

type ServerType s (x ': xs)
= MethodHandler (MethodInput s x)

(MethodOutput s x)
(IsClientStreaming s x)
(IsServerStreaming s x)

-> ServerType s xs
runServerImpl handlers f = runServerImpl (existentialize f : handlers)

82

12.4. The Server Side

where existentialize is a new class method we add to HasMethodHandler. We will
elide it here because it is just a function MethodHandler i o cs mm -> AnyHandler
and is not particularly interesting if you’re familiar with existentialization.

It’s evident here what I meant by handlers being an explicit accumulator – our re-
cursion adds the parameters it receives into this list so that it can pass them eventually
to the base case.

There’s a problem here, however. Reading through this implementation of run-
ServerImpl, you and I both know what the right-hand-side means, unfortunately
GHC isn’t as clever as we are. If you try to compile it right now, GHC will complain
about the non-injectivity of HasServer as implied by the call to runServerImpl (and
also about HasMethodHandler and existentialize, but for the exact same reason.)

The problem is that there’s nothing constraining the type variables s and xs on
runServerImpl. I always find this error confusing (and I suspect everyone does),
because in my mind it’s perfectly clear from the HasServer s xs in the instance con-
straint. However, because SeverType is a type family without any injectivity declara-
tions, it means we can’t learn s and xs from ServerType s xs.

Let’s see why. For a very simple example, let’s look at the following type family:

type family NotInjective a where
NotInjective Int = ()
NotInjective Bool = ()

Here we have NotInjective Int ˜ () and NotInjective Bool ˜ (), which means
even if we know NotInjective a ˜ () it doesn’t mean that we know what a is – it
could be either Int or Bool.

This is the exact problem we have with runServerImpl: even though we know what
type runServerImpl has (it must be ServerType s xs, so that the type on the left-hand
of the equality is the same as on the right), that doesn’t mean we know what s and xs
are! The solution is to explicitly tell GHC via a type signature or type application:

instance (HasMethod s x
, HasMethodHandler (MethodInput s x)

(MethodOutput s x)
(IsClientStreaming s x)
(IsServerStreaming s x)

, HasServer s xs
) => HasServer s (x ': xs) where

type ServerType s (x ': xs)
= MethodHandler (MethodInput s x)

(MethodOutput s x)
(IsClientStreaming s x)
(IsServerStreaming s x)

-> ServerType s xs
runServerImpl handlers f = runServerImpl @s @xs (existentialize f : handlers)

(For those of you playing along at home, you’ll need to type-apply the monstrous
MethodInput and friends to the existentialize as well.)

And finally, we’re done! We can slap a prettier interface in front of this runServer-
Impl to fill in some of the implementation details for us:

83

12. Type-Directed Code Generation - Sandy Maguire

runServer
:: forall s
. (Service s

, HasServer s (ServiceMethods s)
)

=> s
-> ServerType s (ServiceMethods s)

runServer _ = runServerImpl @s @(ServiceMethods s) []

Sweet and typesafe! Yes!

12.5. Client-side Usability
Sweet and typesafe all of this might be, but the user-friendliness on the client-side
leaves a lot to be desired. As promised, we’ll address that now.

12.5.1. Removing Proxies
Recall that the runNonStreamingClient function and its friends require a Proxy m
parameter in order to specify the method you want to call. However, m has kind
Symbol, and thankfully we have some new extensions in GHC for turning Symbols
into values.

We can define a new type, isomorphic to Proxy, but which packs the fact that it is a
KnownSymbol (something we can turn into a String at runtime):

data WrappedMethod (sym :: Symbol) where
WrappedMethod :: KnownSymbol sym => WrappedMethod sym

We change our run*Client friends to take this WrappedMethod m instead of the Proxy
m they used to:

runNonStreamingClient
:: (HasMethod s m

, IsClientStreaming s m ~ 'False
, IsServerStreaming s m ~ 'False
)

=> s
-> WrappedMethod m
-> MethodInput s m
-> IO (Either GRPCError (MethodOutput s m))

and, with this change in place, we’re ready for the magic syntax I promised earlier.

import GHC.OverloadedLabel

instance (KnownSymbol sym
, sym ~ sym'
) => IsLabel sym (WrappedMethod sym') where

fromLabel _ = WrappedMethod

84

12.5. Client-side Usability

This sym ˜ sym’ thing is known as the constraint trick for instances, and is necessary
here to convince GHC that this can be the only possible instance of IsLabel that will
give you back WrappedMethods.

Now turning on the {-# LANGUAGE OverloadedLabels #-} pragma, we’ve changed
the syntax to call these client functions from the ugly:

runBiDiStreamingClient MyService (Proxy @"biDiStreaming")

into the much nicer:

runBiDiStreamingClient MyService #biDiStreaming

12.5.2. Better “Wrong Streaming Variety” Errors
The next step in our journey to delightful usability is remembering that the users
of our library are only human, and at some point they are going to call the wrong
run*Client function on their method with a different variety of streaming semantics.

At the moment, the errors they’re going to get when they try that will be a few
stanza long, the most informative of which will be something along the lines of unable
to match ’False with ’True. Yes, it’s technically correct, but it’s entirely useless.

Instead, we can use the TypeError machinery from GHC.TypeLits to make these
error messages actually helpful to our users. If you aren’t familiar with it, if GHC ever
encounters a TypeError constraint it will die with a error message of your choosing.

We will introduce the following type family:

type family RunNonStreamingClient (cs :: Bool) (ss :: Bool) :: Constraint where
RunNonStreamingClient 'False 'False = ()
RunNonStreamingClient 'False 'True = TypeError

(Text "Called 'runNonStreamingClient' on a server-streaming method."
:$$: Text "Perhaps you meant 'runServerStreamingClient'."

)
RunNonStreamingClient 'True 'False = TypeError

(Text "Called 'runNonStreamingClient' on a client-streaming method."
:$$: Text "Perhaps you meant 'runClientStreamingClient'."

)
RunNonStreamingClient 'True 'True = TypeError

(Text "Called 'runNonStreamingClient' on a bidi-streaming method."
:$$: Text "Perhaps you meant 'runBiDiStreamingClient'."

)

The :$$: type operator stacks message vertically, while :<>: stacks it horizontally.
We can change the constraints on runNonStreamingClient:

runNonStreamingClient
:: (HasMethod s m

, RunNonStreamingClient (IsClientStreaming s m)
(IsServerStreaming s m)

)
=> s
-> WrappedMethod m
-> MethodInput s m
-> IO (Either GRPCError (MethodOutput s m))

85

http://chrisdone.com/posts/haskell-constraint-trick

12. Type-Directed Code Generation - Sandy Maguire

and similarly for our other client functions. Reduction of the resulting boilerplate is
left as an exercise to the reader.

With all of this work out of the way, we can test it:

runNonStreamingClient MyService #biDiStreaming

Main.hs:45:13: error:
* Called 'runNonStreamingClient' on a bidi-streaming method.

Perhaps you meant 'runBiDiStreamingClient'.
* In the expression: runNonStreamingClient MyService #bidi

Amazing!

12.5.3. Better “Wrong Method” Errors
The other class of errors we expect our users to make is to attempt to call a method
that doesn’t exist – either because they made a typo, or are forgetful of which methods
exist on the service in question.

As it stands, users are likely to get about six stanzas of error messages, from No
instance for (HasMethod s m) to Ambiguous type variable ’m0’, and other terri-
ble things that leak our implementation details. Our first thought might be to some-
how emit a TypeError constraint if we don’t have a HasMethod s m instance, but I’m
not convinced such a thing is possible.

But luckily, we can actually do better than any error messages we could produce
in that way. Since our service is driven by a value (in our example, the data con-
structor MyService), by the time things go wrong we do have a Service s instance in
scope. Which means we can look up our ServiceMethods s and given some helpful
suggestions about what the user probably meant.

The first step is to implement a ListContains type family so we can determine if
the method we’re looking for is actually a real method.

type family ListContains (n :: k) (hs :: [k]) :: Bool where
ListContains n '[] = 'False
ListContains n (n ': hs) = 'True
ListContains n (x ': hs) = ListContains n hs

In the base case, we have no list to look through, so our needle is trivially not in the
haystack. If the head of the list is the thing we’re looking for, then it must be in the
list. Otherwise, take off the head of the list and continue looking. Simple really, right?

We can now use this thing to generate an error message in the case that the method
we’re looking for is not in our list of methods:

type family RequireHasMethod s (m :: Symbol) (found :: Bool) :: Constraint where
RequireHasMethod s m 'False = TypeError

(Text "No method "
:<>: ShowType m
:<>: Text " available for service '"
:<>: ShowType s
:<>: Text "'."

86

12.6. Conclusion

:$$: Text "Available methods are: "
:<>: ShowType (ServiceMethods s)

)
RequireHasMethod s m 'True = ()

If found ˜ ’False, then the method m we’re looking for is not part of the service s.
We produce a nice error message informing the user about this (using ShowType to
expand the type variables).

We will provide a type alias to perform this lookup:

type HasMethod' s m =
(RequireHasMethod s m (ListContains m (ServiceMethods s)
, HasMethod s m
)

Our new HasMethod’ s m has the same shape as HasMethod, but will expand to our
custom type error if we’re missing the method under scrutiny.

Replacing all of our old HasMethod constraints with HasMethod’ works fantastically:

Main.hs:54:15: error:
* No method "missing" available for service 'MyService'.

Available methods are: '["biDiStreaming"]

Damn near perfect! That list of methods is kind of ugly, though, so we can write a
quick pretty printer for showing promoted lists:

type family ShowList (ls :: [k]) :: ErrorMessage where
ShowList '[] = Text ""
ShowList '[x] = ShowType x
ShowList (x ': xs) = ShowType x :<>: Text ", " :<>: ShowList xs

Replacing our final ShowType with ShowList in RequireHasMethod now gives us error
messages of the following:

Main.hs:54:15: error:
* No method "missing" available for service 'MyService'.

Available methods are: "biDiStreaming"

Absolutely gorgeous.

12.6. Conclusion
This is where we stop. We’ve used type-level metadata to generate client- and server-
side bindings to an underlying library. Everything we’ve made is entirely typesafe,
and provides gorgeous, helpful error messages if the user does anything wrong.
We’ve found a practical use for many of these seemingly-obscure type-level features,
and learned a few things in the process.

87

12. Type-Directed Code Generation - Sandy Maguire

In the words of my coworker Renzo Carbonara1:
“It is up to us, as people who understand a problem at hand, to try and teach the type system

as much as we can about that problem. And when we don’t understand the problem, talking
to the type system about it will help us understand. Remember, the type system is not magic,
it is a logical reasoning tool.”

This resounds so strongly in my soul, and maybe it will in yours too. If so, I encour-
age you to go forth and find uses for these techniques to improve the experience and
safety of your own libraries.

1 Whose article “Opaleye’s sugar on top” was
a strong inspiration on me, and subsequently on
this post.

88

https://ren.zone/articles/opaleye-sot

Part II.

Posts on testing

89

13. Practical testing in Haskell - Jasper
van der Jeugt

William Yao: A short post about writing property tests for an LRU cache. Main
takeaway is what Jasper terms the “Action trick”: generating complicated data
more easily by instead generating a sequence of events that could happen to the
data and constructing a value accordingly. For instance, you could generate a
binary search tree by generating a sequence of insertions and deletions.

Original article: [12]

13.1. Introduction
There has been a theme of “Practical Haskell” in the last few blogposts I published,
and when I published the last one, on how to write an LRU Cache, someone asked
me if I could elaborate on how I would test or benchmark such a module. For the
sake of brevity, I will constrain myself to testing for now, although I think a lot of the
ideas in the blogpost also apply to benchmarking.

This post is written in Literate Haskell. It depends on the LRU Cache we wrote last
time, so you need both modules if you want to play around with the code. Both can
be found in this repo.

Since I use a different format for blogpost filenames than GHC expects for module
names, loading both modules is a bit tricky. The following works for me:

$ ghci posts/2015-02-24-lru-cache.lhs \
posts/2015-03-13-practical-testing-in-haskell.lhs

*Data.SimpleLruCache> :m +Data.SimpleLruCache.Tests
*Data.SimpleLruCache Data.SimpleLruCache.Tests>

Alternatively, you can of course rename the files.

13.2. Test frameworks in Haskell
There are roughly two kinds of test frameworks which are commonly used in the
Haskell world:

• Unit testing, for writing concrete test cases. We will be using HUnit.

• Property testing, which allows you to test properties rather than specific cases. We
will be using QuickCheck. Property testing is something that might be unfamil-
iar to people just starting out in Haskell. However, because there already are
great tutorials out there on there on QuickCheck, I will not explain it in detail.
smallcheck also falls in this category.

91

https://jaspervdj.be/posts/2015-02-24-lru-cache.html
https://github.com/jaspervdj/jaspervdj/
http://hackage.haskell.org/package/HUnit
http://hackage.haskell.org/package/QuickCheck
http://wiki.haskell.org/Introduction_to_QuickCheck1
http://hackage.haskell.org/package/smallcheck

13. Practical testing in Haskell - Jasper van der Jeugt

Finally, it’s nice to have something to tie it all together. We will be using Tasty,
which lets us run HUnit and QuickCheck tests in the same test suite. It also gives us
plenty of convenient options, e.g. running only a part of the test suite. We could also
choose to use test-framework or Hspec instead of Tasty.

13.3. A module structure for tests
Many Haskell projects start out by just having a tests.hs file somewhere, but this
obviously does not scale well to larger codebases.

The way I like to organize tests is based on how we organize code in general:
through the module hierarchy. If I have the following modules in src/:

AcmeCompany.AwesomeProduct.Database
AcmeCompany.AwesomeProduct.Importer
AcmeCompany.AwesomeProduct.Importer.Csv

I aim to have the following modules in tests/:

AcmeCompany.AwesomeProduct.Database.Tests
AcmeCompany.AwesomeProduct.Importer.Tests
AcmeCompany.AwesomeProduct.Importer.Csv.Tests

If I want to add some higher-level tests which basically test the entire product, I can
usually add these higher in the module tree. For example, if I wanted to test our entire
awesome product, I would write the tests in AcmeCompany.AwesomeProduct.Tests.

Every .Tests module exports a tests :: TestTree value. A TestTree is a tasty
concept – basically a structured group of tests. Let’s go to our motivating example:
testing the LRU Cache I wrote in the previous blogpost.

Since I named the module Data.SimpleLruCache, we use Data.SimpleLruCache.Tests
here.

{-# OPTIONS_GHC -fno-warn-orphans #-}
{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
module Data.SimpleLruCache.Tests

(tests
) where

import Control.Applicative ((<$>), (<*>))
import Control.DeepSeq (NFData)
import Control.Monad (foldM_)
import Data.Hashable (Hashable (..))
import qualified Data.HashPSQ as HashPSQ
import Data.IORef (newIORef, readIORef, writeIORef)
import Data.List (foldl')
import qualified Data.Set as S
import Prelude hiding (lookup)
import Data.SimpleLruCache
import qualified Test.QuickCheck as QC
import qualified Test.QuickCheck.Monadic as QC

92

http://hackage.haskell.org/package/tasty
http://hackage.haskell.org/package/test-framework
http://hspec.github.io/

13.4. What to test

import Test.Tasty (TestTree, testGroup)
import Test.Tasty.HUnit (testCase)
import Test.Tasty.QuickCheck (testProperty)
import Test.HUnit (Assertion, (@?=))

13.4. What to test
One of the hardest questions is, of course, which functions and modules should I test?
If unlimited time and resources are available, the obvious answer is “everything”.
Unfortunately, time and resources are often scarce.

My rule of thumb is based on my development style. I tend to use GHCi a lot
during development, and play around with datastructures and functions until they
seem to work. These “it seems to work” cases I execute in GHCi often make great
candidates for simple HUnit tests, so I usually start with that.

Then I look at invariants of the code, and try to model these as QuickCheck prop-
erties. This sometimes requires writing tricky Arbitrary instances; I will give an
example of this later in this blogpost.

I probably don’t have to say that the more critical the code is, the more tests should
be added.

After doing this, it is still likely that we will hit bugs if the code is non-trivial. These
bugs form good candidates for testing as well:

1. First, add a test case to reproduce the bug. Sometimes a test case will be a better
fit, sometimes we should go with a property – it depends on the bug.

2. Fix the bug so the test case passes.

3. Leave in the test case for regression testing.

Using this strategy, you should be able to convince yourself (and others) that the code
works.

13.5. Simple HUnit tests
Testing simple cases using HUnit is trivial, so we won’t spend that much time here.
@?= asserts that two values must be equal, so let’s use that to check that trimming the
empty Cache doesn’t do anything evil:

testCache01 :: Assertion
testCache01 =

trim (empty 3 :: Cache String Int) @?= empty 3

If we need to some I/O for our test, we can do so without much trouble in HUnit.
After all,

Test.HUnit> :i Assertion
type Assertion = IO () -- Defined in 'Test.HUnit.Lang'

so Assertion is just IO!

93

13. Practical testing in Haskell - Jasper van der Jeugt

testCache02 :: Assertion
testCache02 = do

h <- newHandle 10 :: IO (Handle String Int)
v1 <- cached h "foo" (return 123)
v1 @?= 123
v2 <- cached h "foo" (fail "should be cached")
v2 @?= 123

That was fairly easy.
As you can see, I usually give simple test cases numeric names. Sometimes there

is a meaningful name for a test (for example, if it is a regression test for a bug), but
usually I don’t mind using just numbers.

13.6. Simple QuickCheck tests
Let’s do some property based testing. There are a few properties we can come up
with.

Calling HashPSQ.size takes O(n) time, which is why are keeping our own counter,
cSize. We should check that it matches HashPSQ.size, though:

sizeMatches :: (Hashable k, Ord k) => Cache k v -> Bool
sizeMatches c =

cSize c == HashPSQ.size (cQueue c)

The cTick field contains the priority of our next element that we will insert. The
priorities currently in the queue should all be smaller than that.

prioritiesSmallerThanNext :: (Hashable k, Ord k) => Cache k v -> Bool
prioritiesSmallerThanNext c =

all (< cTick c) priorities
where

priorities = [p | (_, p, _) <- HashPSQ.toList (cQueue c)]

Lastly, the size should always be smaller than or equal to the capacity:

sizeSmallerThanCapacity :: (Hashable k, Ord k) => Cache k v -> Bool
sizeSmallerThanCapacity c =

cSize c <= cCapacity c

13.7. Tricks for writing Arbitrary instances

13.7.1. The Action trick
Of course, if you are somewhat familiar with QuickCheck, you will know that the
previous properties require an Arbitrary instance for Cache.

One way to write such instances is what I’ll call the “direct” method. For us this
would mean generating a list of [(key, priority, value)] pairs and convert that to
a HashPSQ. Then we could compute the size of that and initialize the remaining fields.

94

13.7. Tricks for writing Arbitrary instances

However, writing an Arbitrary instance this way can get hard if our datastructure
becomes more complicated, especially if there are complicated invariants. Addition-
ally, if we take any shortcuts in the implementation of arbitrary, we might not test
the edge cases well!

Another way to write the Arbitrary instance is by modeling use of the API. In our
case, there are only two things we can do with a pure Cache: insert and lookup.

data CacheAction k v
= InsertAction k v
| LookupAction k
deriving (Show)

This has a trivial Arbitrary instance:

instance (QC.Arbitrary k, QC.Arbitrary v) =>
QC.Arbitrary (CacheAction k v) where

arbitrary = QC.oneof
[InsertAction <$> QC.arbitrary <*> QC.arbitrary
, LookupAction <$> QC.arbitrary
]

And we can apply these actions to our pure Cache to get a new Cache:

applyCacheAction
:: (Hashable k, Ord k)
=> CacheAction k v -> Cache k v -> Cache k v

applyCacheAction (InsertAction k v) c = insert k v c
applyCacheAction (LookupAction k) c = case lookup k c of

Nothing -> c
Just (_, c') -> c'

You probably guessed where this was going by now: we can generate an arbitrary
Cache by generating a bunch of these actions and applying them one by one on top
of the empty cache.

instance (QC.Arbitrary k, QC.Arbitrary v, Hashable k, NFData v, Ord k) =>
QC.Arbitrary (Cache k v) where

arbitrary = do
capacity <- QC.choose (1, 50)
actions <- QC.arbitrary
let !cache = empty capacity
return $! foldl' (\c a -> applyCacheAction a c) cache actions

Provided that we can model the complete user facing API using such an “action”
datatype, I think this is a great way to write Arbitrary instances. After all, our
Arbitrary instance should then be able to reach the same states as a user of our code.

An extension of this trick is using a separate datatype which holds the list of actions
we used to generate the Cache as well as the Cache.

data ArbitraryCache k v = ArbitraryCache [CacheAction k v] (Cache k v)
deriving (Show)

When a test fails, we can then log the list of actions which got us into the invalid state
– very useful for debugging. Furthermore, we can implement the shrink method in
order to try to reach a similar invalid state using less actions.

95

13. Practical testing in Haskell - Jasper van der Jeugt

13.7.2. The SmallInt trick
Now, note that our Arbitrary instance is for Cache k v, i.e., we haven’t chosen yet
what we want to have as k and v for our tests. In this case v is not so important, but
the choice of k is important.

We want to cover all corner cases, and this includes ensuring that we cover collisions.
If we use String or Int as key type k, collisions are very unlikely due to the high
cardinality of both types. Since we are using a hash-based container underneath,
hash collisions must also be covered.

We can solve both problems by introducing a newtype which restricts the cardinality
of Int, and uses a “worse” (in the traditional sense) hashing method.

newtype SmallInt = SmallInt Int
deriving (Eq, Ord, Show)

instance QC.Arbitrary SmallInt where
arbitrary = SmallInt <$> QC.choose (1, 100)

instance Hashable SmallInt where
hashWithSalt salt (SmallInt x) = (salt + x) `mod` 10

13.8. Monadic QuickCheck
Now let’s mix QuickCheck with monadic code. We will be testing the Handle interface
to our cache. This interface consists of a single method:

cached
:: (Hashable k, Ord k)
=> Handle k v -> k -> IO v -> IO v

We will write a property to ensure our cache retains and evicts the right key-value
pairs. It takes two arguments: the capacity of the LRU Cache (we use a SmallInt in
order to get more evictions), and a list of key-value pairs we will insert using cached
(we use SmallInt so we will cover collisions).

historic
:: SmallInt -- ^ Capacity
-> [(SmallInt, String)] -- ^ Key-value pairs
-> QC.Property -- ^ Property

historic (SmallInt capacity) pairs = QC.monadicIO $ do

QC.run is used to lift IO code into the QuickCheck property monad PropertyM – so it
is a bit like a more concrete version of liftIO. I prefer it here over liftIO because it
makes it a bit more clear what is going on.

h <- QC.run $ newHandle capacity

We will fold (foldM_) over the pairs we need to insert. The state we pass in this foldM_
is the history of pairs we previously inserted. By building this up again using (:), we
ensure history contains a recent-first list, which is very convenient.

Inside every step, we call cached. By using an IORef in the code where we would
usually actually “load” the value v, we can communicate whether or not the value

96

13.9. Tying everything up

was already in the cache. If it was already in the cache, the write will not be executed,
so the IORef will still be set to False. We store that result in wasInCache.

In order to verify this result, we reconstruct a set of the N most recent keys. We can
easily do this using the list of recent-first key-value pairs we have in history.

foldM_ (step h) [] pairs
where

step h history (k, v) = do
wasInCacheRef <- QC.run $ newIORef True
_ <- QC.run $ cached h k $ do

writeIORef wasInCacheRef False
return v

wasInCache <- QC.run $ readIORef wasInCacheRef
let recentKeys = nMostRecentKeys capacity S.empty history
QC.assert (S.member k recentKeys == wasInCache)
return ((k, v) : history)

This is our auxiliary function to calculate the N most recent keys, given a recent-first
key-value pair list.

nMostRecentKeys :: Ord k => Int -> S.Set k -> [(k, v)] -> S.Set k
nMostRecentKeys _ keys [] = keys
nMostRecentKeys n keys ((k, _) : history)

| S.size keys >= n = keys
| otherwise =

nMostRecentKeys n (S.insert k keys) history

This test did not cover checking that the values in the cache are correct, but only
ensures it retains the correct key-value pairs. This is a conscious decision: I think
the retaining/evicting part of the LRU Cache code was the most tricky, so we should
prioritize testing that.

13.9. Tying everything up
Lastly, we have our tests :: TestTree. It is not much more than an index of tests in
the module. We use testCase to pass HUnit tests to the framework, and testProperty
for QuickCheck properties.

Note that I usually tend to put these at the top of the module, but here I put it at
the bottom of the blogpost for easier reading.

tests :: TestTree
tests = testGroup "Data.SimpleLruCache"

[testCase "testCache01" testCache01
, testCase "testCache02" testCache02
, testProperty "size == HashPSQ.size"

(sizeMatches :: Cache SmallInt String -> Bool)
, testProperty "priorities < next priority"

(prioritiesSmallerThanNext :: Cache SmallInt String -> Bool)
, testProperty "size < capacity"

97

13. Practical testing in Haskell - Jasper van der Jeugt

(sizeSmallerThanCapacity :: Cache SmallInt String -> Bool)
, testProperty "historic" historic
]

The last thing we need is a main function for cabal test to invoke. I usually put this
in something like tests/Main.hs. If you use the scheme which I described above, this
file should look very neat:

module Main where

import Test.Tasty (defaultMain, testGroup)

import qualified AcmeCompany.AwesomeProduct.Database.Tests
import qualified AcmeCompany.AwesomeProduct.Importer.Csv.Tests
import qualified AcmeCompany.AwesomeProduct.Importer.Tests
import qualified Data.SimpleLruCache.Tests

main :: IO ()
main = defaultMain $ testGroup "Tests"

[AcmeCompany.AwesomeProduct.Database.Tests.tests
, AcmeCompany.AwesomeProduct.Importer.Csv.Tests.tests
, AcmeCompany.AwesomeProduct.Importer.Tests.tests
, Data.SimpleLruCache.Tests.tests
]

If you are still hungry for more Haskell testing, I would recommend looking into
Haskell program coverage for mission-critical modules.

Special thanks to Alex Sayers, who beat everyone’s expectations when he managed
to stay sober for just long enough to proofread this blogpost.

98

http://wiki.haskell.org/Haskell_program_coverage

14. Property-Based Testing in a
Screencast Editor: Introduction -
Oskar Wickström

William Yao: Probably the best series of posts I’ve read about using property-
based testing in practice. Lots of interesting tricks and techniques explored. Highly
recommended.

Original article: [13]

This is the first in a series of posts about using property-based testing (PBT) within
Komposition, a screencast editor that I’ve been working on during the last year. It
introduces PBT and highlights some challenges in testing properties of an application
like Komposition.

Future posts will focus on individual case studies, covering increasingly complex
components and how they are tested. I’ll reflect on what I’ve learned in each case,
what bugs the tests have found, and what still remains to be improved.

For example, I’ll explain how using PBT helped me find and fix bugs in the speci-
fication and implementation of Komposition’s video classifier. Those were bugs that
would be very hard to find using example-based tests or using a static type system!

This series is not a tutorial on PBT, but rather a collection of motivating examples.
That said, you should be able to follow along without prior knowledge of PBT.

14.1. Komposition
In early 2018 I started producing Haskell screencasts. A majority of the work involved
cutting and splicing video by hand in a non-linear editing system (NLE) like Premiere
Pro or Kdenlive. I decided to write a screencast editor specialized for my needs, reduc-
ing the amount of manual labor needed to edit the recorded material. Komposition
was born.

Komposition is a modal GUI application built for editing screencasts. Unlike most
NLE systems, it features a hierarchical timeline, built out of sequences, parallels, tracks,
clips and gaps. To make the editing experience more efficient, it automatically classifies
scenes in screen capture video, and sentences in recorded voice-over audio.

If you are curious about Komposition and want to learn more right away, check out
its documentation. Some of the most complex parts of Komposition include focus
and timeline transformations, video classification, video rendering, and the main ap-
plication logic. Those are the areas in which I’ve spent most effort writing tests, using
a combination of example-based and property-based testing.

I’ve selected the four most interesting areas where I’ve applied PBT in Komposition,
and I’ll cover one in each coming blog post:

99

https://haskell-at-work.com/
https://en.wikipedia.org/wiki/Non-linear_editing_system
https://en.wikipedia.org/wiki/Adobe_Premiere_Pro
https://en.wikipedia.org/wiki/Adobe_Premiere_Pro
https://kdenlive.org/en/
https://owickstrom.github.io/komposition/

14. Property-Based Testing in a Screencast Editor: Introduction - Oskar Wickström

Figure 14.1.: Komposition’s timeline mode

1. Timeline flattening

2. Video scene classification

3. Focus and timeline consistency

4. Symmetry of undo/redo

I hope these case studies will be motivating, and that they will show the value of
properties all the way from unit testing to integration testing.

14.2. Property-Based Testing
To get the most out of this series, you need a basic understanding of what PBT is, so
let’s start there. For my take on a minimal definition, PBT is about:

1. Specifying your system under test in terms of properties, where properties de-
scribe invariants of the system based on its input and output.

2. Testing that those properties hold against a large variety of inputs.

It’s worth noting that PBT is not equal to QuickCheck, or any other specific tool, for
that matter. The set of inputs doesn’t have to be randomly generated. You don’t
have to use “shrinking”. You don’t have to use a static type system or a functional
programming language. PBT is a general idea that can be applied in many ways.

The following resources are useful if you want to learn more about PBT:

• The introductory articles on Hypothesis, although specific to Python.

• “What is Property Based Testing?” by David R. MacIver is a definition of what
PBT is, and particularly what it isn’t.

100

https://hypothesis.works/articles/intro/
https://hypothesis.works/articles/what-is-property-based-testing/

14.3. Properties of the Ugly Parts

The code examples will be written in Haskell and using the Hedgehog testing system.
You don’t have to know Haskell to follow this series, as I’ll explain the techniques
primarily without code. But if you are interested in the Haskell specifics and in
Hedgehog, check out “Property testing with Hedgehog” by Tim Humphries.

14.3. Properties of the Ugly Parts
When I started with PBT, I struggled with applying it to anything beyond simple func-
tions. Examples online are often focused on the fundamentals. They cover concepts
like reversing lists, algebraic laws, and symmetric encoders and decoders. Those are
important properties to test, and they are good examples for teaching the foundations
of PBT.

I wanted to take PBT beyond pure and simple functions, and leverage it on larger
parts of my system. The “ugly” parts, if you will. In my experience, the complexity of
a system often becomes much higher than the sum of its parts. The way subsystems
are connected and form a larger graph of dependencies drives the need for integration
testing at an application level.

Finding resources on integration testing using PBT is hard, and it might drive you to
think that PBT is not suited for anything beyond the introductory examples. With the
case studies in this blog series I hope to contribute to debunking such misconceptions.

14.4. Designing for Testability
In my case, it’s a desktop multimedia application. What if we’re working on a back-
end that connects to external systems and databases? Or if we’re writing a frontend
application with a GUI driven by user input? In addition to these kinds of systems
being hard to test at a high level due to their many connected subsystems, they usu-
ally have stateful components, side effects, and non-determinism. How do we make
such systems testable with properties?

Well, the same way we would design our systems to be testable with examples.
Going back to “Writing Testable Code” by Miško Hevery from 2008, and Kent Beck’s

“Test-Driven Development by Example” from 2003, setting aside the OOP specifics,
many of their guidelines apply equally well to code tested with properties:

Determinism: Make it possible to run the “system under test” deterministically, such
that your tests can be reliable. This does not mean the code has to be pure, but
you might need to stub or otherwise control side effects during your tests.

No global state: In order for tests to be repeatable and independent of execution or-
der, you might have to rollback database transactions, use temporary directories
for generated files, stub out effects, etc.

High cohesion: Strive for modules of high cohesion, with smaller units each having a
single responsibility. Spreading closely related responsibilities thin across multi-
ple modules makes the implementation harder to maintain and test.

Low coupling: Decrease coupling between interface and implementation. This makes
it easier to write tests that don’t depend on implementation details. You may
then modify the implementation without modifying the corresponding tests.

101

https://hackage.haskell.org/package/hedgehog
https://teh.id.au/posts/2017/04/23/property-testing-with-hedgehog/
https://testing.googleblog.com/2008/08/by-miko-hevery-so-you-decided-to.html
https://www.amazon.com/Test-Driven-Development-Kent-Beck/dp/0321146530

14. Property-Based Testing in a Screencast Editor: Introduction - Oskar Wickström

I find these guidelines universal for writing testable code in any programming lan-
guage I’ve used professionally, regardless of paradigm or type system. They apply to
both example-based and property-based testing.

14.5. Patterns for Properties
Great, so we know how to write testable code. But how do we write properties for
more complex units, and even for integration testing? There’s not a lot of educational
resources on this subject that I know of, but I can recommend the following starting
points:

• “Choosing properties for property-based testing” by Scott Wlaschin, giving ex-
amples of properties within a set of common categories.

• The talk “Property-Based Testing for Better Code” by Jessica Kerr, with examples
of generating valid inputs and dealing with timeouts.

Taking a step back, we might ask “Why it’s so hard to come up with these properties?”
I’d argue that it’s because doing so forces us to understand our system in a way we’re
not used to. It’s challenging understanding and expressing the general behavior of a
system, rather than particular anecdotes that we’ve observed or come up with.

If you want to get better at writing properties, the only advice I can give you (in ad-
dition to studying whatever you can find in other projects) is to practice. Try it out on
whatever you’re working on. Talk to your colleagues about using properties in addi-
tion to example-based tests at work. Begin at a smaller scale, testing simple functions,
and progress towards testing larger parts of your system once you’re comfortable. It’s
a long journey, filled with reward, surprise, and joy!

14.6. Testing Case Studies
With a basic understanding of PBT, how we can write testable code, and how to write
properties for our system under test, we’re getting ready to dive into the case studies:

1. Introduction (this chapter)

2. Timeline Flattening (see chapter 15)

3. Video Scene Classification (see chapter 16)

4. Integration Testing (see chapter 17)

14.7. Credits
Thank you Chris Ford, Alejandro Serrano Mena, Tobias Pflug, Hillel Wayne, and Ulrik
Sandberg for kindly providing your feedback on my drafts!

102

https://fsharpforfunandprofit.com/posts/property-based-testing-2/
https://www.youtube.com/watch?v=shngiiBfD80

15. Case Study 1: Timeline Flattening
- Oskar Wickström

Original article: [14]

In the first post of this series I introduced the Komposition screencast editor, and
briefly explained the fundamentals of property-based testing (PBT). Furthermore, I
covered how to write testable code, regardless of how you check your code with
automated tests. Lastly, I highlighted some difficulties in using properties to perform
component and integration testing.

If you haven’t read the introductory post, I suggest doing so before continuing with
this one. You’ll need an understanding of what PBT is for this case study to make
sense.

This post is the first case study in the series, covering the timeline flattening process
in Komposition and how it’s tested using PBT. The property tests aren’t integration-
level tests, but rather unit tests. This case study serves as a warm-up to the coming,
more advanced, ones.

Before we look at the tests, we need to learn more about Komposition’s hierarchical
timeline and how the flattening process works.

15.1. The Hierarchical Timeline
Komposition’s timeline is hierarchical. While many non-linear editing systems have
support for some form of nesting1. they are primarily focused on flat timeline work-
flows. The timeline structure and the keyboard-driven editing in Komposition is
optimized for the screencast editing workflow I use.

It’s worth emphasizing that Komposition is not a general video editor. In addition
to its specific editing workflow, you may need to adjust your recording workflow to
use it effectively2.

15.1.1. Video and Audio in Parallels
At the lowest level of the timeline are clips and gaps. Those are put within the video
and audio tracks of parallels. The following diagram (figuare 15.1) shows a parallel
consisting of two video clips and one audio clip. The tracks of a parallel are played

1 Final Cut Pro has compound clips, and Adobe
Premiere Pro has nested sequences

2 The section on workflow in Komposition’s doc-

umentation describes how to plan, record, and
edit your screencast in way compatible with Kom-
position.

103

https://support.apple.com/kb/PH12631?locale=en_US
https://www.premiumbeat.com/blog/nesting-in-adobe-premiere-pro/
https://owickstrom.github.io/komposition/user-guide/workflow/

15. Case Study 1: Timeline Flattening - Oskar Wickström

Figure 15.1.: Clips and gaps are placed in video and audio tracks

simultaneously (in parallel), as indicated by the arrows in the above diagram. The
tracks start playing at the same time. This makes parallels useful to synchronize the
playback of specific parts of a screencast, and to group closely related clips.

15.1.2. Gaps
When editing screencasts made up of separate video and audio recordings you often
end up with differing clip duration. The voice-over audio clip might be longer than
the corresponding video clip, or vice versa. A useful default behaviour is to extend
the short clips. For audio, this is easy. Just pad with silence. For video, it’s not so
clear what to do. In Komposition, shorter video tracks are padded with repeated still
frame sections called gaps.

The following diagram (figure 15.2) shows a parallel with a short video clip and a
longer audio clip. The dashed area represents the implicit gap. You can also add gaps

Figure 15.2.: Still frames are automatically inserted at implicit gaps to match track duration

104

15.1. The Hierarchical Timeline

manually, specifying a duration of the gap and inserting it into a video or audio track.
The following diagram (figure 15.3) shows a parallel with manually added gaps in
both video and audio tracks. Manually added gaps (called explicit gaps) are padded

Figure 15.3.: Adding explicit gaps manually

with still frames or silence, just as implicit gaps that are added automatically to match
track duration.

15.1.3. Sequences
Parallels are put in sequences. The parallels within a sequence are played sequentially;
the first one is played in its entirety, then the next one, and so on. This behaviour
is different from how parallels play their tracks. Parallels and sequences, with their
different playback behaviors, make up the fundamental building blocks of the compo-
sitional editing in Komposition.

The following diagram (figure 15.4) shows a sequence of two parallels, playing
sequentially:

Figure 15.4.: A sequence containing two parallels

15.1.4. The Timeline
Finally, at the top level, we have the timeline. Effectively, the timeline is a sequence of
sequences; it plays every child sequence in sequence. The reason for this level to exist

105

15. Case Study 1: Timeline Flattening - Oskar Wickström

is for the ability to group larger chunks of a screencast within separate sequences. I

Figure 15.5.: A timeline containing two sequences, with two parallels each

use separate sequences within the timeline to delimit distinct parts of a screencast,
such as the introduction, the different chapters, and the summary.

15.2. Timeline Flattening
Komposition currently uses FFmpeg to render the final media. This is done by con-
structing an ffmpeg command invocation with a filter graph describing how to fit
together all clips, still frames, and silent audio parts.

FFmpeg doesn’t know about hierarchical timelines; it only cares about video and
audio streams. To convert the hierarchical timeline into a suitable representation to
build the FFmpeg filter graph from, Komposition performs timeline flattening.

The flat representation of a timeline contains only two tracks; audio and video. All
gaps are explicitly represented in those tracks. The following graph shows how a
hierarchical timeline is flattened into two tracks. Notice in the graphic above how the

Figure 15.6.: Timeline flattening transforming a hierarchical timeline

106

https://ffmpeg.org/
https://ffmpeg.org/ffmpeg-filters.html

15.3. Property Tests

implicit gaps at the ends of video and audio tracks get represented with explicit gaps
in the flat timeline. This is because FFmpeg does not know how to render implicit
gaps. All gaps are represented explicitly, and are converted to clips of still frames or
silent audio when rendered with FFmpeg.

15.3. Property Tests
To test the timeline flattening, there’s a number of properties that are checked. I’ll go
through each one and their property test code.

These properties were primarily written after I already had an implementation.
They capture some general properties of flattening that I’ve come up with. In other
cases, I’ve written properties before beginning on an implementation, or to uncover
an existing bug that I’ve observed.

Thinking about your system’s general behaviour and expressing that as executable
property tests is hard. I believe, like with any other skill, that it requires a lot of
practice. Finding general patterns for properties, like the ones Scott Wlaschin describe
in Choosing properties for property-based testing (see chapter 18), is a great place
to start. When you struggle with finding properties of your system under test, try
applying these patterns and see which work for you.

15.3.1. Property: Duration Equality
Given a timeline t, where all parallels have at least one video clip, the total duration
of the flattened t must be equal to the total duration of t. Or, in a more dense notation,

∀t ∈ T → duration(f latten(t)) = duration(t)

where T is the set of timelines with at least one video clip in each parallel.
The reason that all parallels must have at least one video clip is because currently

the flattening algorithm can only locate still frames for video gaps from within the
same parallel. If it encounters a parallel with no video clips, the timeline flattening
fails. This limitation is discussed in greater detail at the end of this article.

The test for the duration equality property is written using Hedgehog, and looks
like this:

hprop_flat_timeline_has_same_duration_as_hierarchical =
property $ do

-- 1. Generate a timeline with video clips in each parallel
timeline' <- forAll $

Gen.timeline (Range.exponential 0 5) Gen.parallelWithClips

-- 2. Flatten the timeline and extract the result
let Just flat = Render.flattenTimeline timeline'

-- 3. Check that hierarchical and flat timeline duration are equal
durationOf AdjustedDuration timeline'

=== durationOf AdjustedDuration flat

107

15. Case Study 1: Timeline Flattening - Oskar Wickström

It generates a timeline using forAll and custom generators (1). Instead of generating
timelines of any shape and filtering out only the ones with video clips in each parallel,
which would be very inefficient, this test uses a custom generator to only obtain inputs
that satisfy the invariants of the system under test.

The range passed as the first argument to Gen.timeline is used as the bounds of
the generator, such that each level in the generated hierarchical timeline will have at
most 5 children.

Gen.timeline takes as its second argument another generator, the one used to gen-
erate parallels, which in this case is Gen.parallelWithClips. With Hedgehog gener-
ators being regular values, it’s practical to compose them like this. A “higher-order
generator” can be a regular function taking other generators as arguments.

As you might have noticed in the assertion (3), durationOf takes as its first ar-
gument a value AdjustedDuration. What’s that about? Komposition supports ad-
justing the playback speed of video media for individual clips. To calculate the fi-
nal duration of a clip, the playback speed needs to taken into account. By passing
AdjustedDuration we take playback speed into account for all video clips.

SIDETRACK: FINDING A BUG
Let’s say I had introduced a bug in timeline flattening, in which all video gaps weren’t
added correctly to the flat video tracks. The flattening is implemented as a fold, and it
would not be unthinkable that the accumulator was incorrectly constructed in a case.
The test would catch this quickly and present us with a minimal counter-example (see
figure 15.7).

Hedgehog prints the source code for the failing property. Below the forAll line
the generated value is printed. The difference between the expected and actual value
is printed below the failing assertion. In this case it’s a simple expression of type
Duration. In case you’re comparing large tree-like structures, this diff will highlight
only the differing expressions. Finally, it prints the following:

This failure can be reproduced by running:

> recheck (Size 23) (Seed 16495576598183007788 5619008431246301857) <property>

When working on finding and fixing the fold bug, we can use the printed size and
seed values to deterministically rerun the test with the exact same inputs.

15.3.2. Property: Clip Occurence
Slightly more complicated than the duration equality property, the clip occurrence
property checks that all clips from the hierarchical timeline, and no other clips, occur
within the flat timeline. As discussed in the introduction on timeline flattening, im-
plicit gaps get converted to explicit gaps and thereby add more gaps, but no video or
audio clips should be added or removed.

hprop_flat_timeline_has_same_clips_as_hierarchical =
property $ do

-- 1. Generate a timeline with video clips in each parallel
timeline' <- forAll $

Gen.timeline (Range.exponential 0 5) Gen.parallelWithClips

-- 2. Flatten the timeline

108

15.3. Property Tests

Figure 15.7.: Hedgehog presenting a minimal counter-example

109

15. Case Study 1: Timeline Flattening - Oskar Wickström

let flat = Render.flattenTimeline timeline'

-- 3. Check that all video clips occur in the flat timeline
flat ^.. _Just . Render.videoParts . each . Render._VideoClipPart

=== timelineVideoClips timeline'

-- 4. Check that all audio clips occur in the flat timeline
flat ^.. _Just . Render.audioParts . each . Render._AudioClipPart

=== timelineAudioClips timeline'

The hierarchical timeline is generated and flattened like before (1, 2). The two asser-
tions check that the respective video clips (3) and audio clips (4) are equal. It’s using
lenses to extract clips from the flat timeline, and the helper functions timelineVideoClips
and timelineAudioClips to extract clips from the original hierarchical timeline.

15.4. Still Frames Used
In the process of flattening, the still frame source for each gap is selected. It doesn’t
assign the actual pixel data to the gap, but a value describing which asset the still
frame should be extracted from, and whether to pick the first or the last frame (known
as still frame mode). This representation lets the flattening algorithm remain a pure
function, and thus easier to test. Another processing step runs the effectful action that
extracts still frames from video files on disk.

The decision of still frame mode and source is made by the flattening algorithm
based on the parallel in which each gap occur, and what video clips are present
before or after. It favors using clips occurring after the gap. It only uses frames from
clips before the gap in case there are no clips following it. To test this behaviour, I’ve
defined three properties.

15.4.1. Property: Single Initial Video Clip
The following property checks that an initial single video clip, followed by one or
more gaps, is used as the still frame source for those gaps.

hprop_flat_timeline_uses_still_frame_from_single_clip =
property $ do

-- 1. Generate a video track generator where the first video part
-- is always a clip
let genVideoTrack = do

v1 <- Gen.videoClip
vs <- Gen.list (Range.linear 1 5) Gen.videoGap
pure (VideoTrack () (v1 : vs))

-- 2. Generate a timeline with the custom video track generator
timeline' <- forAll $ Gen.timeline

(Range.exponential 0 5)
(Parallel () <$> genVideoTrack <*> Gen.audioTrack)

110

15.4. Still Frames Used

-- 3. Flatten the timeline
let flat = Render.flattenTimeline timeline'

-- 4. Check that any video gaps will use the last frame of a
-- preceding video clip
flat

^.. (_Just
. Render.videoParts
. each
. Render._StillFramePart
. Render.stillFrameMode
)

& traverse_ (Render.LastFrame ===)

The custom video track generator (1) always produces tracks with an initial video
clip followed by one or more video gaps. The generated timeline (2) can contain
parallels with any audio track shape, which may result in a longer audio track and
thus an implicit gap at the end of the video track. In either case, all video gaps should
padded with the last frame of the initial video clip, which is checked in the assertion
(4).

Figure 15.8.: Still frames being sourced from the single initial video clip

15.4.2. Property: Ending with a Video Clip
In case the video track ends with a video clip, and is longer than the audio track, all
video gaps within the track should use the first frame of a following clip.

hprop_flat_timeline_uses_still_frames_from_subsequent_clips =
property $ do

-- 1. Generate a parallel where the video track ends with a video clip,
-- and where the audio track is shorter
let

genParallel = do
vt <-

111

15. Case Study 1: Timeline Flattening - Oskar Wickström

VideoTrack ()
<$> (snoc

<$> Gen.list (Range.linear 1 10) Gen.videoPart
<*> Gen.videoClip
)

at <- AudioTrack () . pure . AudioGap () <$> Gen.duration'
(Range.linearFrac

0
(durationToSeconds (durationOf AdjustedDuration vt) - 0.1)

)
pure (Parallel () vt at)

-- 2. Generate a timeline with the custom parallel generator
timeline' <- forAll $ Gen.timeline (Range.exponential 0 5) genParallel

-- 3. Flatten the timeline
let flat = Render.flattenTimeline timeline'

-- 4. Check that all gaps use the first frame of subsequent clips
flat

^.. (_Just
. Render.videoParts
. each
. Render._StillFramePart
. Render.stillFrameMode
)

& traverse_ (Render.FirstFrame ===)

The custom generator (1) produces parallels where the video track is guaranteed to
end with a clip, and where the audio track is 100 ms shorter than the video track. This
ensures that there’s no implicit video gap at the end of the video track. Generating
(2) and flattening (3) is otherwise the same as before. The assertion (4) checks that all
video gaps uses the first frame of a following clip.

Figure 15.9.: Still frames being sourced from following video clips when possible

15.4.3. Property: Ending with an Implicit Video Gap
The last property on still frame usage covers the case where the video track is shorter
than the audio track. This leaves an implicit gap which, just like explicit gaps inserted

112

15.5. Properties: Flattening Equivalences

by the user, are padded with still frames.

hprop_flat_timeline_uses_last_frame_for_automatic_video_padding =
property $ do

-- 1. Generate a parallel where the video track only contains a video
-- clip, and where the audio track is longer
let

genParallel = do
vt <- VideoTrack () . pure <$> Gen.videoClip
at <- AudioTrack () . pure . AudioGap () <$> Gen.duration'

(Range.linearFrac
(durationToSeconds (durationOf AdjustedDuration vt) + 0.1)
10

)
pure (Parallel () vt at)

-- 2. Generate a timeline with the custom parallel generator
timeline' <- forAll $ Gen.timeline (Range.exponential 0 5) genParallel

-- 3. Flatten the timeline
let flat = Render.flattenTimeline timeline'

-- 4. Check that video gaps (which should be a single gap at the
-- end of the video track) use the last frame of preceding clips
flat

^.. (_Just
. Render.videoParts
. each
. Render._StillFramePart
. Render.stillFrameMode
)

& traverse_ (Render.LastFrame ===)

The custom generator (1) generates a video track consisting of video clips only, and
an audio track that is 100ms longer. Generating the timeline (2) and flattening (3) are
again similar to the previous property tests. The assertion (4) checks that all video
gaps use the last frame of preceding clips, even if we know that there should only be
one at the end.

15.5. Properties: Flattening Equivalences
The last property I want to show in this case study checks flattening at the sequence
and parallel levels. While rendering a full project always flattens at the timeline, the
preview feature in Komposition can be used to render and preview a single sequence
or parallel.

There should be no difference between flattening an entire timeline and flattening
all of its sequences or parallels and folding those results into a single flat timeline.
This is what the flattening equivalences properties are about.

113

15. Case Study 1: Timeline Flattening - Oskar Wickström

Figure 15.10.: Still frames being sourced from preceding video clip for last implicit gap

hprop_flat_timeline_is_same_as_all_its_flat_sequences =
property $ do

-- 1. Generate a timeline
timeline' <- forAll $

Gen.timeline (Range.exponential 0 5) Gen.parallelWithClips

-- 2. Flatten all sequences and fold the resulting flat
-- timelines together
let flat = timeline' ^.. sequences . each

& foldMap Render.flattenSequence

-- 3. Make sure we successfully flattened the timeline
flat /== Nothing

-- 4. Flatten the entire timeline and compare to the flattened
-- sequences
Render.flattenTimeline timeline' === flat

The first property generates a timeline (1) where all parallels have at least one video
clip. It flattens all sequences within the timeline and folds the results together (2).
Folding flat timelines together means concatenating their video and audio tracks, re-
sulting in a single flat timeline.

Before the final assertion, it checks that we got a result (3) and not Nothing. As
it’s using the Gen.parallelWithClips generator there should always be video clips
in each parallel, and we should always successfully flatten and get a result. The final
assertion (4) checks that rendering the original timeline gives the same result as the
folded-together results of rendering each sequence.

The other property is very similar, but operates on parallels rather than sequences:

hprop_flat_timeline_is_same_as_all_its_flat_parallels =
property $ do

-- 1. Generate a timeline
timeline' <- forAll $

114

15.6. Missing Properties

Gen.timeline (Range.exponential 0 5) Gen.parallelWithClips

-- 2. Flatten all parallels and fold the resulting flat
-- timelines together
let flat = timeline' ^.. sequences . each . parallels . each

& foldMap Render.flattenParallel

-- 3. Make sure we successfully flattened the timeline
flat /== Nothing

-- 4. Flatten the entire timeline and compare to the flattened
-- parallels
Render.flattenTimeline timeline' === flat

The only difference is in the traversal (2), where we apply Render.flattenParallel
to each parallel instead of applying Render.flattenSequence to each sequence.

15.6. Missing Properties
Whew! That was quite a lot of properties and code, especially for a warm-up. But
timeline flattening could be tested more thoroughly! I haven’t yet written the follow-
ing properties, but I’m hoping to find some time to add them:

• Clip playback timestamps are the same. The “clip occurrence” property only
checks that the hierarchical timeline’s clips occur in the flat timeline. It doesn’t
check when in the flat timeline they occur. One way to test this would be to first
annotate each clip in original timeline with its playback timestamp, and transfer
this information through to the flat timeline. Then the timestamps could be
included in the assertion.

• Source assets used as still frame sources. The “still frames used” properties
only check the still frame mode of gaps, not the still frame sources. The algo-
rithm could have a bug where it always uses the first video clip’s asset as a
frame source, and the current property tests would not catch it.

• Same flat result is produced regardless of sequence grouping. Sequences can
be split or joined in any way without affecting the final rendered media. They
are merely ways of organizing parallels in logical groups. A property could
check that however you split or join sequences within a timeline, the flattened
result is the same.

15.7. A Missing Feature
As pointed out earlier, parallels must have at least one video clip. The flattening
algorithm can only locate still frame sources for video gaps from within the same
parallel. This is an annoying limitation when working with Komposition, and the
algorithm should be improved.

As the existing set of properties describe timeline flattening fairly well, changing
the algorithm could be done with a TDD-like workflow:

115

15. Case Study 1: Timeline Flattening - Oskar Wickström

1. Modify the property tests to capture the intended behaviour

2. Tests will fail, with the errors showing how the existing implementation fails to
find still frame sources as expected

3. Change the implementation to make the tests pass

PBT is not only an after-the-fact testing technique. It can be used much like conven-
tional example-based testing to drive development.

15.8. Obligatory Cliff-Hanger
In this post we’ve looked at timeline flattening, the simplest case study in the “Property-
Based Testing in a Screencast Editor” series. The system under test was a module of
pure functions, with complex enough behaviour to showcase PBT as a valuable tool.
The tests are more closely related to the design choices and concrete representations
of the implementation.

Coming case studies will dive deeper into the more complex subsystems of Kom-
position, and finally we’ll see how PBT can be used for integration testing. At that
level, the property tests are less tied to the implementation, and focus on describing
the higher-level outcomes of the interaction between subsystems.

Next up is property tests for the video classifier. It’s also implemented a pure
function, but with slightly more complicated logic that is trickier to test. We’re going
to look at an interesting technique where we generate the expected output instead of
the input.

116

16. Case Study 2: Video Scene
Classification - Oskar Wickström

Original article: [15]

In the last case study on property-based testing (PBT) in Komposition we looked at
timeline flattening. This post covers the video classifier, how it was tested before, and
the bugs I found when I wrote property tests for it.

If you haven’t read the introduction (see 14) or the first case study (see 15) yet, I
recommend checking them out!

16.1. Classifying Scenes in Imported Video
Komposition can automatically classify scenes when importing video files. This is a
central productivity feature in the application, effectively cutting recorded screencast
material automatically, letting the user focus on arranging the scenes of their screen-
cast. Scenes are segments that are considered moving, as opposed to still segments:

• A still segment is a sequence of at least S seconds of near-equal frames

• A moving segment is a sequence of non-equal frames, or a sequence of near-equal
frames with a duration less than S

S is a preconfigured minimum still segment duration in Komposition. In the future it
might be configurable from the user interface, but for now it’s hard-coded.

Equality of two frames f1 and f2 is defined as a function E(f1, f2), described infor-
mally as:

• comparing corresponding pixel color values of f1 and f2, with a small epsilon
for tolerance of color variation, and

• deciding two frames equal when at least 99% of corresponding pixel pairs are
considered equal.

In addition to the rules stated above, there are two edge cases:

1. The first segment is always a considered a moving segment (even if it’s just a
single frame)

2. The last segment may be a still segment with a duration less than S

The second edge case is not what I would call a desirable feature, but rather a
shortcoming due to the classifier not doing any type of backtracking. This could
be changed in the future.

117

16. Case Study 2: Video Scene Classification - Oskar Wickström

16.2. Manually Testing the Classifier
The first version of the video classifier had no property tests. Instead, I wrote what I
thought was a decent classifier algorithm, mostly messing around with various pixel
buffer representations and parallel processing to achieve acceptable performance.

The only type of testing I had available, except for general use of the application,
was a color-tinting utility. This was a separate program using the same classifier
algorithm. It took as input a video file, and produced as output a video file where
each frame was tinted green or red, for moving and still frames, respectively (Note
from the editor: on the web-page there is a GIF showing the color tinting. For obvious
reasons, an anmiated GIF cannot be included here).

In the (in this document omitted) recording above you see the color-tinted output
video based on a recent version of the classifier. It classifies moving and still segments
rather accurately. Before I wrote property tests and fixed the bugs that I found, it did
not look so pretty, flipping back and forth at seemingly random places.

At first, debugging the classifier with the color-tinting tool way seemed like a cre-
ative and powerful technique. But the feedback loop was horrible, having to record
video, process it using the slow color-tinting program, and inspecting it by eye. In
hindsight, I can conclude that PBT is far more effective for testing the classifier.

16.3. Video Classification Properties
Figuring out how to write property tests for video classification wasn’t obvious to me.
It’s not uncommon in example-based testing that tests end up mirroring the structure,
and even the full implementation complexity, of the system under test. The same can
happen in property-based testing.

With some complex systems it’s very hard to describe the correctness as a relation
between any valid input and the system’s observed output. The video classifier is one
such case. How do I decide if an output classification is correct for a specific input,
without reimplementing the classification itself in my tests?

The other way around is easy, though! If I have a classification, I can convert that
into video frames. Thus, the solution to the testing problem is to not generate the
input, but instead generate the expected output. Hillel Wayne calls this technique

“oracle generators” in his recent article1.
The classifier property tests generate high-level representations of the expected clas-

sification output, which are lists of values describing the type and duration of seg-
ments. Next, the list of output segments is converted into a sequence of actual frames.

Figure 16.1.: A generated sequence of expected classified segments

Frames are two-dimensional arrays of RGB pixel values. The conversion is simple:

1 See the “Oracle Generators” section in Finding
Property Tests (see 19).

118

16.4. Testing Still Segment Minimum Length

• Moving segments are converted to a sequence of alternating frames, flipping
between all gray and all white pixels

• Still frames are converted to a sequence of frames containing all black pixels

The example sequence in the diagram above, when converted to pixel frames with
a frame rate of 10 FPS, can be visualized like in the following diagram, where each
thin rectangle represents a frame: By generating high-level output and converting it to

Figure 16.2.: Pixel frames derived from a sequence of expected classified output segments

pixel frames, I have input to feed the classifier with, and I know what output it should
produce. Writing effective property tests then comes down to writing generators that
produce valid output, according to the specification of the classifier. In this post I’ll
show two such property tests.

16.4. Testing Still Segment Minimum Length
As stated in the beginning of this post, classified still segments must have a duration
greater than or equal to S , where S is the minimum still segment duration used as
a parameter for the classifier. The first property test we’ll look at asserts that this
invariant holds for all classification output.

hprop_classifies_still_segments_of_min_length = property $ do

-- 1. Generate a minimum still segment length/duration
minStillSegmentFrames <- forAll $ Gen.int (Range.linear 2 (2 * frameRate))
let minStillSegmentTime = frameCountDuration minStillSegmentFrames

-- 2. Generate output segments
segments <- forAll $

genSegments (Range.linear 1 10)
(Range.linear 1

(minStillSegmentFrames * 2))
(Range.linear minStillSegmentFrames

(minStillSegmentFrames * 2))
resolution

-- 3. Convert test segments to actual pixel frames
let pixelFrames = testSegmentsToPixelFrames segments

-- 4. Run the classifier on the pixel frames
let counted = classifyMovement minStillSegmentTime (Pipes.each pixelFrames)

& Pipes.toList
& countSegments

119

16. Case Study 2: Video Scene Classification - Oskar Wickström

-- 5. Sanity check
countTestSegmentFrames segments === totalClassifiedFrames counted

-- 6. Ignore last segment and verify all other segments
case initMay counted of

Just rest ->
traverse_ (assertStillLengthAtLeast minStillSegmentTime) rest

Nothing -> success
where

resolution = 10 :. 10

This chunk of test code is pretty busy, and it’s using a few helper functions that I’m
not going to bore you with. At a high level, this test:

1. Generates a minimum still segment duration, based on a minimum frame count
(let’s call it n) in the range [2, 20]. The classifier currently requires that n ≥ 2,
hence the lower bound. The upper bound of 20 frames is an arbitrary number
that I’ve chosen.

2. Generates valid output segments using the custom generator genSegments, where

• moving segments have a frame count in [1, 2n], and

• still segments have a frame count in [n, 2n].

3. Converts the generated output segments to actual pixel frames. This is done
using a helper function that returns a list of alternating gray and white frames,
or all black frames, as described earlier.

4. Count the number of consecutive frames within each segment, producing a list
like [Moving 18, Still 5, Moving 12, Still 30].

5. Performs a sanity check that the number of frames in the generated expected
output is equal to the number of frames in the classified output. The classifier
must not lose or duplicate frames.

6. Drops the last classified segment, which according to the specification can have
a frame count less than n, and asserts that all other still segments have a frame
count greater than or equal to n.

Let’s run some tests.

> :{
| hprop_classifies_still_segments_of_min_length
| & Hedgehog.withTests 10000
| & Hedgehog.check
| :}

X<interactive> passed 10000 tests.
Cool, it looks like it’s working.

120

16.5. Testing Moving Segment Time Spans

Sidetrack: Why generate the output?
Now, you might wonder why I generate output segments first, and then convert to
pixel frames. Why not generate random pixel frames to begin with? The property
test above only checks that the still segments are long enough!

The benefit of generating valid output becomes clearer in the next property test,
where I use it as the expected output of the classifier. Converting the output to a se-
quence of pixel frames is easy, and I don’t have to state any complex relation between
the input and output in my property. When using oracle generators, the assertions
can often be plain equality checks on generated and actual output.

But there’s benefit in using the same oracle generator for the “minimum still seg-
ment length” property, even if it’s more subtle. By generating valid output and con-
verting to pixel frames, I can generate inputs that cover the edge cases of the system
under test. Using property test statistics and coverage checks, I could inspect cover-
age, and even fail test runs where the generators don’t hit enough of the cases I’m
interested in2.

Had I generated random sequences of pixel frames, then perhaps the majority of
the generated examples would only produce moving segments. I could tweak the
generator to get closer to either moving or still frames, within some distribution, but
wouldn’t that just be a variation of generating valid scenes? It would be worse, in
fact. I wouldn’t then be reusing existing generators, and I wouldn’t have a high-level
representation that I could easily convert from and compare with in assertions.

16.5. Testing Moving Segment Time Spans
The second property states that the classified moving segments must start and end
at the same timestamps as the moving segments in the generated output. Compared
to the previous property, the relation between generated output and actual classified
output is stronger.

hprop_classifies_same_scenes_as_input = property $ do
-- 1. Generate a minimum still still segment duration
minStillSegmentFrames <- forAll $ Gen.int (Range.linear 2 (2 * frameRate))
let minStillSegmentTime = frameCountDuration minStillSegmentFrames

-- 2. Generate test segments
segments <- forAll $ genSegments (Range.linear 1 10)

(Range.linear 1
(minStillSegmentFrames * 2))

(Range.linear minStillSegmentFrames
(minStillSegmentFrames * 2))

resolution

-- 3. Convert test segments to actual pixel frames
let pixelFrames = testSegmentsToPixelFrames segments

2 John Hughes’ talk Building on developers’ in-
tuitions goes into depth on this. There’s also work
being done to provide similar functionality for

Hedgehog.

121

https://www.youtube.com/watch?v=NcJOiQlzlXQ
https://www.youtube.com/watch?v=NcJOiQlzlXQ
https://github.com/hedgehogqa/haskell-hedgehog/pull/253
https://github.com/hedgehogqa/haskell-hedgehog/pull/253

16. Case Study 2: Video Scene Classification - Oskar Wickström

-- 4. Convert expected output segments to a list of expected time spans
-- and the full duration
let durations = map segmentWithDuration segments

expectedSegments = movingSceneTimeSpans durations
fullDuration = foldMap unwrapSegment durations

-- 5. Classify movement of frames
let classifiedFrames =

Pipes.each pixelFrames
& classifyMovement minStillSegmentTime
& Pipes.toList

-- 6. Classify moving scene time spans
let classified =

(Pipes.each classifiedFrames
& classifyMovingScenes fullDuration)

>-> Pipes.drain
& Pipes.runEffect
& runIdentity

-- 7. Check classified time span equivalence
expectedSegments === classified

where
resolution = 10 :. 10

Steps 1–3 are the same as in the previous property test. From there, this test:

4. Converts the generated output segments into a list of time spans. Each time span
marks the start and end of an expected moving segment. Furthermore, it needs
the full duration of the input in step 6, so that’s computed here.

5. Classify the movement of each frame, i.e. if it’s part of a moving or still segment.

6. Run the second classifier function called classifyMovingScenes, based on the full
duration and the frames with classified movement data, resulting in a list of
time spans.

7. Compare the expected and actual classified list of time spans.

While this test looks somewhat complicated with its setup and various conversions,
the core idea is simple. But is it effective?

16.6. Bugs! Bugs everywhere!
Preparing for a talk on property-based testing, I added the “moving segment time
spans” property a week or so before the event. At this time, I had used Komposition
to edit multiple screencasts. Surely, all significant bugs were caught already. Adding

122

16.6. Bugs! Bugs everywhere!

property tests should only confirm the level of quality the application already had.
Right?

Nope. First, I discovered that my existing tests were fundamentally incorrect to be-
gin with. They were not reflecting the specification I had in mind, the one I described
in the beginning of this post.

Furthermore, I found that the generators had errors. At first, I used Hedgehog
to generate the pixels used for the classifier input. Moving frames were based on a
majority of randomly colored pixels and a small percentage of equally colored pixels.
Still frames were based on a random single color.

The problem I had not anticipated was that the colors used in moving frames were
not guaranteed to be distinct from the color used in still frames. In small-sized ex-
amples I got black frames at the beginning and end of moving segments, and black
frames for still segments, resulting in different classified output than expected. Hedge-
hog shrinking the failing examples’ colors towards 0, which is black, highlighted this
problem even more.

I made my generators much simpler, using the alternating white/gray frames ap-
proach described earlier, and went on to running my new shiny tests. Here’s what I
got: What? Where does 0s–0.6s come from? The classified time span should’ve been

Figure 16.3.: Hedgehog output

0s–1s, as the generated output has a single moving scene of 10 frames (1 second at
10 FPS). I started digging, using the annotate function in Hedgehog to inspect the
generated and intermediate values in failing examples.

I couldn’t find anything incorrect in the generated data, so I shifted focus to the
implementation code. The end timestamp 0.6s was consistently showing up in failing

123

16. Case Study 2: Video Scene Classification - Oskar Wickström

examples. Looking at the code, I found a curious hard-coded value 0.5 being bound
and used locally in classifyMovement.

The function is essentially a fold over a stream of frames, where the accumulator
holds vectors of previously seen and not-yet-classified frames. Stripping down and
simplifying the old code to highlight one of the bugs, it looked something like this:

classifyMovement minStillSegmentTime =
case ... of

InStillState{..} ->
if someDiff > minEqualTimeForStill

then ...
else ...

InMovingState{..} ->
if someOtherDiff >= minStillSegmentTime

then ...
else ...

where
minEqualTimeForStill = 0.5

Let’s look at what’s going on here. In the InStillState branch it uses the value
minEqualTimeForStill, instead of always using the minStillSegmentTime argument.
This is likely a residue from some refactoring where I meant to make the value a
parameter instead of having it hard-coded in the definition.

Sparing you the gory implementation details, I’ll outline two more problems that
I found. In addition to using the hard-coded value, it incorrectly classified frames
based on that value. Frames that should’ve been classified as “moving” ended up

“still”. That’s why I didn’t get 0s–1s in the output.
Why didn’t I see 0s–0.5s, given the hard-coded value 0.5? Well, there was also

an off-by-one bug, in which one frame was classified incorrectly together with the
accumulated moving frames.

The classifyMovement function is 30 lines of Haskell code juggling some state, and
I managed to mess it up in three separate ways at the same time. With these tests in
place I quickly found the bugs and fixed them. I ran thousands of tests, all passing.

Finally, I ran the application, imported a previously recorded video, and edited a
short screencast. The classified moving segments where notably better than before.

16.7. Summary
A simple streaming fold can hide bugs that are hard to detect with manual testing.
The consistent result of 0.6, together with the hard-coded value 0.5 and a frame rate of
10 FPS, pointed clearly towards an off-by-one bug. I consider this is a great showcase
of how powerful shrinking in PBT is, consistently presenting minimal examples that
point towards specific problems. It’s not just a party trick on ideal mathematical
functions.

Could these errors have been caught without PBT? I think so, but what effort would
it require? Manual testing and introspection did not work for me. Code review might
have revealed the incorrect definition of minEqualTimeForStill, but perhaps not the
off-by-one and incorrect state handling bugs. There are of course many other QA tech-
niques, I won’t evaluate all. But given the low effort that PBT requires in this setting,

124

16.8. Coming Up

the amount of problems it finds, and the accuracy it provides when troubleshooting,
I think it’s a clear win.

I also want to highlight the iterative process that I find naturally emerges when
applying PBT:

1. Think about how your system is supposed to work. Write down your specifica-
tion.

2. Think about how to generate input data and how to test your system, based
on your specification. Tune your generators to provide better test data. Try out
alternative styles of properties. Perhaps model-based or metamorphic testing
fits your system better.

3. Run tests and analyze the minimal failing examples. Fix your implementation
until all tests pass.

This can be done when modifying existing code, or when writing new code. You can
apply this without having any implementation code yet, perhaps just a minimal stub,
and the workflow is essentially the same as TDD.

16.8. Coming Up
The final post in this series will cover testing at a higher level of the system, with
effects and multiple subsystems being integrated to form a full application. We will
look at property tests that found many bugs and that made a substantial refactoring
possible.

125

16. Case Study 2: Video Scene Classification - Oskar Wickström

126

17. Case Study 3: Integration Testing -
Oskar Wickström

Original article: [16]

This is the final case study in the “Property-Based Testing in a Screencast Editor”
series. It covers property-based integration testing and its value during aggressive
refactoring work within Komposition.

17.1. A History of Two Stacks
In Komposition, a project’s state is represented using an in-memory data structure.
It contains the hierarchical timeline, the focus, import and render settings, project
storage file paths, and more. To let users navigate backwards and forwards in their
history of project edits, for example when they have made a mistake, Komposition
supplies undo and redo commands.

The undo/redo history was previously implemented as a data structure recording
project states, compromised of:

• a current state variable

• a stack of previous states

• a stack of possible future states

The undo/redo history data structure held entire project state values. Each undoable
and redoable user action created a new state value. Let’s look a bit closer at how this
worked.

17.1.1. Performing Actions
When a user performed an undoable/redoable action, the undo/redo history would:

• push the previous state onto the undo stack

• perform the action and replace the current state

• discard all states in the redo stack

This can be visualized as in the following diagram, where the state d is being replaced
with a new state h, and d being pushed onto the undo stack. The undo/redo history
to the left of the dividing line is the original, and the one to the right is the resulting
history. Again, note that performing new actions discarded all states in the redo stack.

127

17. Case Study 3: Integration Testing - Oskar Wickström

Figure 17.1.: Performing an action pushes the previous state onto the undo stack and discards
the redo stack

17.1.2. Undoing Actions
When the user chose to undo an action, the undo/redo history would:

• pop the undo stack and use that state as the current state

• push the previous state onto the redo stack

The following diagram shows how undoing the last performed action’s resulting state,
d, pushes d onto the redo stack, and pops c from the undo stack to use that as the
current state.

Figure 17.2.: Undoing pushes the previous state onto the redo stack and pops the undo stack
for a current state

128

17.1. A History of Two Stacks

17.1.3. Redoing Actions
When the user chose to redo an action, the undo/redo history would:

• pop the redo stack and use that state as the current state

• push the previous state onto the undo stack

The last diagram shows how redoing, recovering a previously undone state, pops
g from the redo stack to use that as the current state, and pushes the previous
state d onto the undo stack. Note that not all user actions in Komposition are un-

Figure 17.3.: Undoing pushes the previous state onto the redo stack and pops the undo stack
for a current state

doable/redoable. Actions like navigating the focus or zooming are not recorded in
the history.

17.1.4. Dealing With Performance Problems
While the “two stacks of states” algorithm was easy to understand and implement, it
failed to meet my non-functional requirements. A screencast project compromised of
hundreds or thousands of small edits would consume gigabytes of disk space when
stored, take tens of seconds to load from disk, and consume many gigabytes of RAM
when in memory.

Now, you might think that my implementation was incredibly naive, and that the
performance problems could be fixed with careful profiling and optimization. And
you’d probably be right! I did consider going down that route, optimizing the code,
time-windowing edits to compact history on the fly, and capping the history at some
fixed size. Those would all be interesting pursuits, but in the end I decided to try
something else.

129

17. Case Study 3: Integration Testing - Oskar Wickström

17.2. Refactoring with Property-Based Integration Tests
Instead of optimizing the current stack-based implementation, I decided to implement
the undo/redo history in terms of inverse actions. In this model, actions not only
modify the project state, they also return another action, its inverse, that reverses the
effects of the original action. Instead of recording a new project state data structure
for each edit, the history only records descriptions of the actions themselves.

I realized early that introducing the new undo/redo history implementation in
Komposition was not going to be a small task. It would touch the majority of com-
mand implementation code, large parts of the main application logic, and the project
binary serialization format. What it wouldn’t affect, though, was the module describ-
ing user commands in abstract.

To provide a safety net for the refactoring, I decided to cover the undo/redo func-
tionality with tests. As the user commands would stay the same throughout my
modifications, I chose to test at that level, which can be characterized as integration-
level testing. The tests run Komposition, including its top-level application control
flow, but with the user interface and some other effects stubbed out. Making your
application testable at this level is hard work, but the payoff can be huge.

With Komposition featuring close to twenty types of user commands, combined
with a complex hierarchical timeline and navigation model, the combinatory explo-
sion of possible states was daunting. Relying on example-based tests to safeguard my
work was not satisfactory. While PBT couldn’t cover the entire state space either, I
was confident it would improve my chances of finding actual bugs.

17.2.1. Undo/Redo Tests
Before I began refactoring, I added tests for the inverse property of undoable/redoable
actions. The first test focuses on undoing actions, and is structured as follows:

1. Generate an initial project and application state

2. Generate a sequence of undoable/redoable commands (wrapped in events)

3. Run the application with the initial state and the generated events

4. Run an undo command for each original command

5. Assert that final timeline is equal to the initial timeline

Let’s look at the Haskell Hedgehog property test:

hprop_undo_actions_are_undoable = property $ do

-- 1. Generate initial timeline and focus
timelineAndFocus <- forAllWith showTimelineAndFocus $

Gen.timelineWithFocus (Range.linear 0 10) Gen.parallel

-- ... and initial application state
initialState <- forAll (initializeState timelineAndFocus)

130

https://en.wikipedia.org/wiki/Inverse_function

17.2. Refactoring with Property-Based Integration Tests

-- 2. Generate a sequence of undoable/redoable commands
events <- forAll $

Gen.list (Range.exponential 1 100) genUndoableTimelineEvent

-- 3. Run 'events' on the original state
beforeUndos <- runTimelineStubbedWithExit events initialState

-- 4. Run as many undo commands as undoable commands
afterUndos <- runTimelineStubbedWithExit (undoEvent <$ events) beforeUndos

-- 5. That should result in a timeline equal to the one we started
-- with
timelineToTree (initialState ^. currentTimeline)

=== timelineToTree (afterUndos ^. currentTimeline)

The second test, focusing on redoing actions, is structured very similarly to the previ-
ous test:

1. Generate an initial project and application state

2. Generate a sequence of undoable commands (wrapped in events)

3. Run the application with the initial state and the generated events

4. Run an undo commands for each original command

5. Run an redo commands for each original command

6. Assert that final timeline is equal to the timeline before undoing actions

The test code is also very similar:

hprop_undo_actions_are_redoable = property $ do

-- 1. Generate the initial timeline and focus
timelineAndFocus <- forAllWith showTimelineAndFocus $

Gen.timelineWithFocus (Range.linear 0 10) Gen.parallel

-- ... and the initial application state
initialState <- forAll (initializeState timelineAndFocus)

-- 2. Generate a sequence of undoable/redoable commands
events <- forAll $

Gen.list (Range.exponential 1 100) genUndoableTimelineEvent

-- 3. Run 'events' on the original state
beforeUndos <- runTimelineStubbedWithExit events initialState

-- 4. Run undo commands corresponding to all original commands
afterRedos <-

runTimelineStubbedWithExit (undoEvent <$ events) beforeUndos

131

17. Case Study 3: Integration Testing - Oskar Wickström

-- 5. Run redo commands corresponding to all original commands
>>= runTimelineStubbedWithExit (redoEvent <$ events)

-- 6. That should result in a timeline equal to the one we had
-- before undoing actions
timelineToTree (beforeUndos ^. currentTimeline)

=== timelineToTree (afterRedos ^. currentTimeline)

Note that these tests only assert on the equality of timelines, not entire project states,
as undoable commands only operate on the timeline.

17.2.2. All Tests Passing, Everything Works
The undo/redo tests were written and run on the original stack-based implementa-
tion, kept around during a refactoring that took me two weeks of hacking during
late nights and weekends, and finally run and passing with the new implementation
based on inverse actions. Except for a few minimal adjustments to data types, these
tests stayed untouched during the entire process.

The confidence I had when refactoring felt like a super power. Two simple property
tests made the undertaking possible. They found numerous bugs, including:

• Off-by-one index errors in actions modifying the timeline

• Inconsistent timeline focus:

– focus was incorrectly restored on undoing an action

– focus was outside of the timeline bounds

• Non-inverse actions:

– actions returning incorrectly constructed inverses

– the inverse of splitting a sequence is joining sequences, and joining them
back up didn’t always work

After all tests passed, I ran the application with its GUI, edited a screencast project,
and it all worked flawlessly. It’s almost too good to be true, right?

Property testing is not a silver bullet, and there might still be bugs lurking in my
undo/redo history implementation. The tests I run are never going to be exhaustive
and my generators might be flawed. That being said, they gave me a confidence in
refactoring that I’ve never had before. Or maybe I just haven’t hit that disastrous edge
case yet?

17.3. Why Test With Properties?
This was the last case study in the “Property-Based Testing in a Screencast Editor”
series. I’ve had a great time writing these articles and giving talks on the subject.
Before I wrap up, I’ll summarize my thoughts on PBT in general and my experience
with it in Komposition.

Property-based testing is not only for pure functions; you can use it to test effectful
actions. It is not only for unit testing; you can write integration tests using properties.

132

17.3. Why Test With Properties?

It’s not only for functional programming languages; there are good frameworks for
most popular programming languages.

Properties describe the general behavior of the system under test, and verify its
correctness using a variety of inputs. Not only is this an effective way of finding
errors, it’s also a concise way of documenting the system.

The iterative process in property-based testing, in my experience, comes down to
the following steps:

1. Think about the specification of your system under test

2. Think about how generators and tests should work

3. Write or modify generators, tests, and implementation code, based on steps 1

and 2

4. Get minimal examples of failing tests

5. Repeat

Using PBT within Komposition has made it possible to confidently refactor large parts
of the application. It has found errors in my thinking, my generators, my tests, and
in my implementation code. Testing video scene classification went from a time con-
suming, repetitive, and manual verification process to a fast, effective, and automated
task.

In short, it’s been a joy, and I look forward to continue using PBT in my work and in
my own projects. I hope I’ve convinced you of its value, and inspired you to try it out,
no matter what kind of project you’re working on and what programming language
you are using. Involve your colleagues, practice writing property tests together, and
enjoy finding complicated bugs before your users do!

133

17. Case Study 3: Integration Testing - Oskar Wickström

134

18. Choosing properties for
property-based testing - Scott
Wlaschin

William Yao: More starting points for figuring out what properties to test.

Original article: [17]

UPDATE: I did a talk on property-based testing based on these posts. Slides and video here.

In the previous post, I described the basics of property-based testing, and showed
how it could save a lot of time by generating random tests.

But here’s a common problem. Everyone who sees a property-based testing tool like
FsCheck or QuickCheck thinks that it is amazing. . . but when it times come to start
creating your own properties, the universal complaint is: “what properties should I
use? I can’t think of any!”

The goal of this post is to show some common patterns that can help you discover
the properties that are applicable to your code.

18.1. Categories for properties
In my experience, many properties can be discovered by using one of the seven ap-
proaches listed below.

• “Different paths, same destination” (see 18.1.1)

• “There and back again” (see 18.1.2)

• “Some things never change” (see 18.1.3)

• “The more things change, the more they stay the same” (see 18.1.4)

• “Solve a smaller problem first” (see 18.1.5)

• “Hard to prove, easy to verify” (see 18.1.6)

• “The test oracle” (see 18.1.7)

This is by no means a comprehensive list, just the ones that have been most useful
to me. For a different perspective, check out the list of patterns that the PEX team at
Microsoft have compiled.

135

https://fsharpforfunandprofit.com/pbt/
https://fsharpforfunandprofit.com/posts/property-based-testing/

18. Choosing properties for property-based testing - Scott Wlaschin

18.1.1. “Different paths, same destination”
These kinds of properties are based on combining operations in different orders, but
getting the same result. For example, in the diagram below, doing X then Y gives the
same result as doing Y followed by X (see figure 18.1). The commutative property of

Figure 18.1.: Commutative Properties

addition is an obvious example of this pattern. For example, the result of add 1 then
add 2 is the same as the result of add 2 followed by add 1.

This pattern, generalized, can produce a wide range of useful properties. We’ll see
some more uses of this pattern later in this post.

18.1.2. “There and back again”
These kinds of properties are based on combining an operation with its inverse, end-
ing up with the same value you started with.

In the diagram below, doing X serializes ABC to some kind of binary format, and
the inverse of X is some sort of deserialization that returns the same ABC value again
(see figure 18.2). In addition to serialization/deserialization, other pairs of operations
can be checked this way: addition/subtraction, write/read, setProperty/getProperty,
and so on.

Other pair of functions fit this pattern too, even though they are not strict inverses,
pairs such as insert/contains, create/exists , etc.

18.1.3. “Some things never change”
These kinds of properties are based on an invariant that is preserved after some trans-
formation.

In the diagram below (figure 18.3), the transform changes the order of the items,
but the same four items are still present afterwards. Common invariants include size
of a collection (for map say), the contents of a collection (for sort say), the height or
depth of something in proportion to size (e.g. balanced trees).

136

18.1. Categories for properties

Figure 18.2.: Inverse Properties

Figure 18.3.: Invariant Properties

18.1.4. “The more things change, the more they stay the same”
These kinds of properties are based on “idempotence” – that is, doing an operation
twice is the same as doing it once.

In the diagram below (figure 18.4), using distinct to filter the set returns two items,
but doing distinct twice returns the same set again. Idempotence properties are very

Figure 18.4.: Idempotent Properties

useful, and can be extended to things like database updates and message processing.

18.1.5. “Solve a smaller problem first”
These kinds of properties are based on “structural induction” – that is, if a large thing
can be broken into smaller parts, and some property is true for these smaller parts,
then you can often prove that the property is true for a large thing as well.

In the diagram below (figure 18.5), we can see that the four-item list can be parti-
tioned into an item plus a three-item list, which in turn can be partitioned into an item

137

18. Choosing properties for property-based testing - Scott Wlaschin

plus a two-item list. If we can prove the property holds for two-item list, then we can
infer that it holds for the three-item list, and for the four-item list as well. Induction

Figure 18.5.: Induction Properties

properties are often naturally applicable to recursive structures such as lists and trees.

18.1.6. “Hard to prove, easy to verify”
Often an algorithm to find a result can be complicated, but verifying the answer is
easy.

In the diagram below (figure 18.6), we can see that finding a route through a maze
is hard, but checking that it works is trivial! Many famous problems are of this sort,

Figure 18.6.: Easy to Verify Properties

such as prime number factorization. But this approach can be used for even simple
problems.

For example, you might check that a string tokenizer works by just concatenating
all the tokens again. The resulting string should be the same as what you started
with.

18.1.7. “The test oracle”
In many situations you often have an alternate version of an algorithm or process (a

“test oracle”) that you can use to check your results (figure 18.7). For example, you
might have a high-performance algorithm with optimization tweaks that you want

138

18.2. Putting the categories to work with some real examples

Figure 18.7.: Test Oracle

to test. In this case, you might compare it with a brute force algorithm that is much
slower but is also much easier to write correctly.

Similarly, you might compare the result of a parallel or concurrent algorithm with
the result of a linear, single thread version.

18.2. Putting the categories to work with some real
examples

In this section, we’ll apply these categories to see if we can come up with properties
for some simple functions such as “sort a list” and “reverse a list”.

18.2.1. “Different paths, same destination” applied to a list sort
Let’s start with “different paths, same destination” and apply it to a “list sort” func-
tion.

Can we think of any way of combining an operation before List.sort, and another
operation after List.sort, so that you should end up with the same result? That is,
so that “going up then across the top” is the same as “going across the bottom then
up”. How about this?

• Path 1: We add one to each element of the list, then sort.

• Path 2: We sort, then add one to each element of the list.

• Both lists should be equal.

Here’s some code that implements that property:

139

18. Choosing properties for property-based testing - Scott Wlaschin

Figure 18.8.: List Sort Property

Figure 18.9.: List Sort Property +1

140

18.2. Putting the categories to work with some real examples

let ``+1 then sort should be same as sort then +1`` sortFn aList =
let add1 x = x + 1

let result1 = aList |> sortFn |> List.map add1
let result2 = aList |> List.map add1 |> sortFn
result1 = result2

// test
let goodSort = List.sort
Check.Quick (``+1 then sort should be same as sort then +1`` goodSort)
// Ok, passed 100 tests.

Well, that works, but it also would work for a lot of other transformations too. For
example, if we implemented List.sort as just the identity, then this property would
be satisfied equally well! You can test this for yourself:

let badSort aList = aList
Check.Quick (``+1 then sort should be same as sort then +1`` badSort)
// Ok, passed 100 tests.

The problem with this property is that it is not exploiting any of the ”sortedness“.
We know that a sort will probably reorder a list, and certainly, the smallest element
should be first.

How about adding an item that we know will come at the front of the list after
sorting?

• Path 1: We append Int32.MinValue to the end of the list, then sort.

• Path 2: We sort, then prepend Int32.MinValue to the front of the list.

• Both lists should be equal.

Figure 18.10.: List Sort Property with Int32.MinValue

Here’s the code:

141

18. Choosing properties for property-based testing - Scott Wlaschin

let ``append minValue then sort should be same as sort then prepend minValue``
sortFn aList =

let minValue = Int32.MinValue

let appendThenSort = (aList @ [minValue]) |> sortFn
let sortThenPrepend = minValue :: (aList |> sortFn)
appendThenSort = sortThenPrepend

// test
Check.Quick (``append minValue then sort should be same as sort then

prepend minValue`` goodSort)
// Ok, passed 100 tests.

The bad implementation fails now!

Check.Quick (``append minValue then sort should be same as sort then
prepend minValue`` badSort)

// Falsifiable, after 1 test (2 shrinks)
// [0]

In other words, the bad sort of [0; minValue] is not the same as [minValue; 0]. So
that’s good!

But. . . we’ve got some hard coded things in there that the Enterprise Developer
From Hell (see previous post) could take advantage of! The EDFH will exploit the
fact that we always use Int32.MinValue and that we always prepend or append it to
the test list.

In other words, the EDFH can identify which path we are on and have special cases
for each one:

// The Enterprise Developer From Hell strikes again
let badSort2 aList =

match aList with
| [] -> []
| _ ->

let last::reversedTail = List.rev aList
if (last = Int32.MinValue) then

// if min is last, move to front
let unreversedTail = List.rev reversedTail
last :: unreversedTail

else
aList // leave alone

And when we check it. . .

// Oh dear, the bad implementation passes!
Check.Quick (``append minValue then sort should be same as sort then

prepend minValue`` badSort2)
// Ok, passed 100 tests.

142

https://fsharpforfunandprofit.com/posts/property-based-testing/

18.2. Putting the categories to work with some real examples

We could fix this by (a) picking a random number smaller than any number in the list
and (b) inserting it at a random location rather than always appending it. But rather
than getting too complicated, let’s stop and reconsider.

An alternative approach which also exploits the ”sortedness“ is to first negate all
the values, then on the path that negates after the sort, add an extra reverse as well.

Figure 18.11.: List Sort Property with negate

let ``negate then sort should be same as sort then negate then reverse``
sortFn aList =

let negate x = x * -1

let negateThenSort = aList |> List.map negate |> sortFn
let sortThenNegateAndReverse = aList |> sortFn |> List.map

negate |> List.rev
negateThenSort = sortThenNegateAndReverse

This property is harder for the EDFH to beat because there are no magic numbers to
help identify which path you are on:

// test
Check.Quick (``negate then sort should be same as sort then negate then

reverse`` goodSort)
// Ok, passed 100 tests.

// test
Check.Quick (``negate then sort should be same as sort then negate then

reverse`` badSort)
// Falsifiable, after 1 test (1 shrinks)
// [1; 0]

// test
Check.Quick (``negate then sort should be same as sort then negate then

reverse`` badSort2)
// Falsifiable, after 5 tests (3 shrinks)
// [1; 0]

143

18. Choosing properties for property-based testing - Scott Wlaschin

You might argue that we are only testing sorting for lists of integers. But the List.sort
function is generic and knows nothing about integers per se, so I have high confidence
that this property does test the core sorting logic.

Applying “different paths, same destination” to a list reversal function

Ok, enough of List.sort. What about applying the same ideas to the list reversal
function?

We can do the same append/prepend trick:

Figure 18.12.: List reverse

Here’s the code for the property:

let ``append any value then reverse should be same as reverse then prepend
same value`` revFn anyValue aList =

let appendThenReverse = (aList @ [anyValue]) |> revFn
let reverseThenPrepend = anyValue :: (aList |> revFn)
appendThenReverse = reverseThenPrepend

Here are the test results for the correct function and for two incorrect functions:

// test
let goodReverse = List.rev
Check.Quick (``append any value then reverse should be same as reverse

then prepend same value`` goodReverse)
// Ok, passed 100 tests.

// bad implementation fails
let badReverse aList = []
Check.Quick (``append any value then reverse should be same as reverse

then prepend same value`` badReverse)
// Falsifiable, after 1 test (2 shrinks)
// true, []

// bad implementation fails
let badReverse2 aList = aList
Check.Quick (``append any value then reverse should be same as reverse

144

18.3. “There and back again”

then prepend same value`` badReverse2)
// Falsifiable, after 1 test (1 shrinks)
// true, [false]

You might notice something interesting here. I never specified the type of the list. The
property works with any list.

In cases like these, FsCheck will generate random lists of bools, strings, ints, etc.
In both failing cases, the anyValue is a bool. So FsCheck is using lists of bools to

start with.
Here’s an exercise for you: Is this property good enough? Is there some way that

the EDFH can create an implementation that will pass?

18.3. “There and back again”
Sometimes the multi-path style properties are not available or too complicated, so
let’s look at some other approaches. We’ll start with properties involving inverses.

Let’s start with list sorting again. Is there an inverse to sorting? Hmmm, not really.
So we’ll skip sorting for now. What about list reversal? Well, as it happens, reversal
is its own inverse!

Figure 18.13.: List reverse with inverse

Let’s turn that into a property:

let ``reverse then reverse should be same as original`` revFn aList =
let reverseThenReverse = aList |> revFn |> revFn
reverseThenReverse = aList

And it passes:

let goodReverse = List.rev
Check.Quick (``reverse then reverse should be same as original`` goodReverse)
// Ok, passed 100 tests.

Unfortunately, a bad implementation satisfies the property too!

let badReverse aList = aList
Check.Quick (``reverse then reverse should be same as original`` badReverse)
// Ok, passed 100 tests.

145

18. Choosing properties for property-based testing - Scott Wlaschin

Nevertheless, the use of properties involving inverses can be very useful to verify
that your inverse function (such as deserialization) does indeed “undo” the primary
function (such as serialization).

We’ll see some real examples of using this in the next post.

18.4. “Hard to prove, easy to verify”
So far we’ve been testing properties without actually caring about the end result of
an operation. But of course in practice, we do care about the end result!

Now we normally can’t really tell if the result is right without duplicating the
function under test. But often we can tell that the result is wrong quite easily. In the
maze diagram from above, we can easily check whether the path works or not.

If we are looking for the shortest path, we might not be able to check it, but at least
we know that we have some valid path. This principle can be applied quite generally.

For example, let’s say that we want to check whether a string split function is
working. We don’t have to write a tokenizer – all we have to do is ensure that the
tokens, when concatenated, give us back the original string!

Figure 18.14.: String split property

Here’s the core code from that property:

let concatWithComma s t = s + "," + t

let tokens = originalString.Split [| ',' |]
let recombinedString =

// can use reduce safely because there is always at least one token
tokens |> Array.reduce concatWithComma

// compare the result with the original
originalString = recombinedString

146

18.4. “Hard to prove, easy to verify”

But how can we create an original string? The random strings generated by FsCheck
are unlikely to contain many commas! There are ways that you can control exactly
how FsCheck generates random data, which we’ll look at later.

For now though, we’ll use a trick. The trick is to let FsCheck generate a list of
random strings, and then we’ll build an originalString from them by concatting
them together. So here’s the complete code for the property:

let ``concatting the elements of a string split by commas recreates the
original string`` aListOfStrings =

// helper to make a string
let addWithComma s t = s + "," + t
let originalString = aListOfStrings |> List.fold addWithComma ""

// now for the property
let tokens = originalString.Split [| ',' |]
let recombinedString =

// can use reduce safely because there is always at least
// one token
tokens |> Array.reduce addWithComma

// compare the result with the original
originalString = recombinedString

When we test this we are happy:

Check.Quick ``concatting the elements of a string split by commas recreates
the original string``

// Ok, passed 100 tests.

“Hard to prove, easy to verify” for list sorting

So how can we apply this principle to a sorted list? What property is easy to verify?
The first thing that pops into my mind is that for each pair of elements in the list,

the first one will be smaller than the second.

Figure 18.15.: Pairwise property

So let’s make that into a property:

147

18. Choosing properties for property-based testing - Scott Wlaschin

let ``adjacent pairs from a list should be ordered`` sortFn aList =
let pairs = aList |> sortFn |> Seq.pairwise
pairs |> Seq.forall (fun (x,y) -> x <= y)

But something funny happens when we try to check it. We get an error!

let goodSort = List.sort
Check.Quick (``adjacent pairs from a list should be ordered`` goodSort)

System.Exception: Geneflect: type not handled System.IComparable
at FsCheck.ReflectArbitrary.reflectObj@102-4.Invoke(String message)
at Microsoft.FSharp.Core.PrintfImpl.go@523-3[b,c,d](String fmt,
Int32 len, FSharpFunc`2 outputChar, FSharpFunc`2 outa, b os,
FSharpFunc`2 finalize, FSharpList`1 args, Int32 i)

at Microsoft.FSharp.Core.PrintfImpl.run@521[b,c,d](FSharpFunc`2
initialize, String fmt, Int32 len, FSharpList`1 args)

What does System.Exception: type not handled System.IComparable mean? It
means that FsCheck is trying to generate a random list, but all it knows is that the
elements must be IComparable. But IComparable is not a type than can be instantiated,
so FsCheck throws an error.

How can we prevent this from happening? The solution is to specify a particular
type for the property, such as int list, like this:

let ``adjacent pairs from a list should be ordered`` sortFn
(aList:int list) =

let pairs = aList |> sortFn |> Seq.pairwise
pairs |> Seq.forall (fun (x,y) -> x <= y)

This code works now.

let goodSort = List.sort
Check.Quick (``adjacent pairs from a list should be ordered`` goodSort)
// Ok, passed 100 tests.

Note that even though the property has been constrained, the property is still a very
general one. We could have used string list instead, for example, and it would
work just the same.

let ``adjacent pairs from a string list should be ordered`` sortFn
(aList:string list) =

let pairs = aList |> sortFn |> Seq.pairwise
pairs |> Seq.forall (fun (x,y) -> x <= y)

Check.Quick (``adjacent pairs from a string list should be ordered`` goodSort)
// Ok, passed 100 tests.

TIP: If FsCheck throws “type not handled”, add explicit type constraints to your
property

Are we done now? No! One problem with this property is that it doesn’t catch
malicious implementations by the EDFH.

148

18.5. “Some things never change”

// bad implementation passes
let badSort aList = []
Check.Quick (``adjacent pairs from a list should be ordered`` badSort)
// Ok, passed 100 tests.

Is it a surprise to you that a silly implementation also works? Hmmm. That tells us
that there must be some property other than pairwise ordering associated with sorting
that we’ve overlooked. What are we missing here?

This is a good example of how doing property-based testing can lead to insights
about design. We thought we knew what sorting meant, but we’re being forced to
be a bit stricter in our definition. As it happens, we’ll fix this particular problem by
using the next principle!

18.5. “Some things never change”
A useful kind of property is based on an invariant that is preserved after some trans-
formation, such as preserving length or contents.

They are not normally sufficient in themselves to ensure a correct implementation,
but they do often act as a counter-check to more general properties. For example, in
the previous post, we created commutative and associative properties for addition,
but then noticed that simply having an implementation that returned zero would
satisfy them just as well! It was only when we added x + 0 = x as a property that we
could eliminate that particular malicious implementation.

And in the “list sort” example above, we could satisfy the “pairwise ordered” prop-
erty with a function that just returned an empty list! How could we fix that? Our
first attempt might be to check the length of the sorted list. If the lengths are different,
then the sort function obviously cheated!

let ``sort should have same length as original`` sortFn (aList:int list) =
let sorted = aList |> sortFn
List.length sorted = List.length aList

We check it and it works:

let goodSort = List.sort
Check.Quick (``sort should have same length as original`` goodSort)
// Ok, passed 100 tests.

And yes, the bad implementation fails:

let badSort aList = []
Check.Quick (``sort should have same length as original`` badSort)
// Falsifiable, after 1 test (1 shrink)
// [0]

Unfortunately, the BDFH is not defeated and can come up with another compliant
implementation! Just repeat the first element N times!

149

https://fsharpforfunandprofit.com/posts/property-based-testing/

18. Choosing properties for property-based testing - Scott Wlaschin

// bad implementation has same length
let badSort2 aList =

match aList with
| [] -> []
| head::_ -> List.replicate (List.length aList) head

// for example
// badSort2 [1;2;3] => [1;1;1]

Now when we test this, it passes:

Check.Quick (``sort should have same length as original`` badSort2)
// Ok, passed 100 tests.

What’s more, it also satisfies the pairwise property too!

Check.Quick (``adjacent pairs from a list should be ordered`` badSort2)
// Ok, passed 100 tests.

18.5.1. Sort invariant - 2nd attempt
So now we have to try again. What is the difference between the real result [1;2;3]
and the fake result [1;1;1]?

Answer: the fake result is throwing away data. The real result always contains the
same contents as the original list, but just in a different order.

Figure 18.16.: Permutation property

That leads us to a new property: a sorted list is always a permutation of the original
list. Aha! Let’s write the property in terms of permutations now:

let ``a sorted list is always a permutation of the original list``
sortFn (aList:int list) =

let sorted = aList |> sortFn
let permutationsOfOriginalList = permutations aList

// the sorted list must be in the seq of permutations
permutationsOfOriginalList
|> Seq.exists (fun permutation -> permutation = sorted)

150

18.5. “Some things never change”

Great, now all we need is a permutation function. Let’s head over to StackOverflow
and steal borrow an implementation. Here it is:

/// given aList and anElement to insert,
/// generate all possible lists with anElement
/// inserted into aList
let rec insertElement anElement aList =

// From http://stackoverflow.com/a/4610704/1136133
seq {

match aList with
// empty returns a singleton
| [] -> yield [anElement]
// not empty?
| first::rest ->

// return anElement prepended to the list
yield anElement::aList
// also return first prepended to all the sublists
for sublist in insertElement anElement rest do

yield first::sublist
}

/// Given a list, return all permutations of it
let rec permutations aList =

seq {
match aList with
| [] -> yield []
| first::rest ->

// for each sub-permutation,
// return the first inserted into it somewhere
for sublist in permutations rest do

yield! insertElement first sublist
}

Some quick interactive tests confirm that it works as expected:

permutations ['a';'b';'c'] |> Seq.toList
// [['a'; 'b'; 'c']; ['b'; 'a'; 'c']; ['b'; 'c'; 'a']; ['a'; 'c'; 'b'];
// ['c'; 'a'; 'b']; ['c'; 'b'; 'a']]

permutations ['a';'b';'c';'d'] |> Seq.toList
// [['a'; 'b'; 'c'; 'd']; ['b'; 'a'; 'c'; 'd']; ['b'; 'c'; 'a'; 'd'];
// ['b'; 'c'; 'd'; 'a']; ['a'; 'c'; 'b'; 'd']; ['c'; 'a'; 'b'; 'd'];
// ['c'; 'b'; 'a'; 'd']; ['c'; 'b'; 'd'; 'a']; ['a'; 'c'; 'd'; 'b'];
// ['c'; 'a'; 'd'; 'b']; ['c'; 'd'; 'a'; 'b']; ['c'; 'd'; 'b'; 'a'];
// ['a'; 'b'; 'd'; 'c']; ['b'; 'a'; 'd'; 'c']; ['b'; 'd'; 'a'; 'c'];
// ['b'; 'd'; 'c'; 'a']; ['a'; 'd'; 'b'; 'c']; ['d'; 'a'; 'b'; 'c'];
// ['d'; 'b'; 'a'; 'c']; ['d'; 'b'; 'c'; 'a']; ['a'; 'd'; 'c'; 'b'];
// ['d'; 'a'; 'c'; 'b']; ['d'; 'c'; 'a'; 'b']; ['d'; 'c'; 'b'; 'a']]

151

http://stackoverflow.com/a/4610704/1136133

18. Choosing properties for property-based testing - Scott Wlaschin

permutations [3;3] |> Seq.toList
// [[3; 3]; [3; 3]]

Excellent! Now let’s run FsCheck:

Check.Quick (``a sorted list is always a permutation of the original
list`` goodSort)

Hmmm. That’s funny, nothing seems to be happening. And my CPU is maxing out
for some reason. What’s going on?

What’s going on is that you are going to be sitting there for a long time! If you are
following along at home, I suggest you right-click and cancel the interactive session
now. The innocent looking permutations is really really slow for any normal sized
list. For example, a list of just 10 items has 3,628,800 permutations. While with 20

items, you are getting to astronomical numbers. And of course, FsCheck will be doing
hundreds of these tests! So this leads to an important tip:

TIP: Make sure your property checks are very fast. You will be running them a
LOT!

We’ve already seen that even in the best case, FsCheck will evaluate the property
100 times. And if shrinking is needed, even more. So make sure your tests are fast
to run! But what happens if you are dealing with real systems such as databases,
networks, or other slow dependencies?

In his (highly recommended) video on using QuickCheck, John Hughes tells of
when his team was trying to detect flaws in a distributed data store that could be
caused by network partitions and node failures. Of course, killing real nodes thou-
sands of times was too slow, so they extracted the core logic into a virtual model, and
tested that instead. As a result, the code was later refactored to make this kind of test-
ing easier. In other words, property-based testing influenced the design of the code,
just as TDD would.

18.5.2. Sort invariant - 3rd attempt
Ok, so we can’t use permutations by just looping through them. So let’s use the same
idea but write a function that is specific for this case, a isPermutationOf function.

let ``a sorted list has same contents as the original list`` sortFn
(aList:int list) =

let sorted = aList |> sortFn
isPermutationOf aList sorted

Here’s the code for isPermutationOf and its associated helper functions:

/// Given an element and a list, and other elements previously
/// skipped,
/// return a new list without the specified element.
/// If not found, return None
let rec withoutElementRec anElement aList skipped =

match aList with
| [] -> None
| head::tail when anElement = head ->

152

http://vimeo.com/68383317

18.6. Sidebar: Combining properties

// matched, so create a new list from the skipped and
// the remaining
// and return it
let skipped' = List.rev skipped
Some (skipped' @ tail)

| head::tail ->
// no match, so prepend head to the skipped and recurse
let skipped' = head :: skipped
withoutElementRec anElement tail skipped'

/// Given an element and a list
/// return a new list without the specified element.
/// If not found, return None
let withoutElement x aList =

withoutElementRec x aList []

/// Given two lists, return true if they have the same contents
/// regardless of order
let rec isPermutationOf list1 list2 =

match list1 with
| [] -> List.isEmpty list2 // if both empty, true
| h1::t1 ->

match withoutElement h1 list2 with
| None -> false
| Some t2 ->

isPermutationOf t1 t2

Let’s try the test again. And yes, this time it completes before the heat death of the
universe.

Check.Quick (``a sorted list has same contents as the original list``
goodSort)

// Ok, passed 100 tests.

What’s also great is that the malicious implementation now fails to satisfy this prop-
erty!

Check.Quick (``a sorted list has same contents as the original list``
badSort2)

// Falsifiable, after 2 tests (5 shrinks)
// [1; 0]

In fact, these two properties, adjacent pairs from a list should be ordered and a
sorted list has same contents as the original list should indeed ensure that
any implementation is correct.

18.6. Sidebar: Combining properties
Just above, we noted that there were two properties needed to define the “is sorted”
property. It would be nice if we could combine them into one property is sorted so
that we can have a single test.

153

18. Choosing properties for property-based testing - Scott Wlaschin

Well, of course we can always merge the two sets of code into one function, but it’s
preferable to keep functions as small as possible. Furthermore, a property like has
same contents might be reusable in other contexts as well. What we want then, is an
equivalent to AND and OR that is designed to work with properties.

FsCheck to the rescue! There are built in operators to combine properties: .&. for
AND and .|. for OR. Here is an example of them in use:

let ``list is sorted``sortFn (aList:int list) =
let prop1 = ``adjacent pairs from a list should be ordered`` sortFn

aList
let prop2 = ``a sorted list has same contents as the original list``

sortFn aList
prop1 .&. prop2

When we test the combined property with a good implementation of sort, everything
works as expected.

let goodSort = List.sort
Check.Quick (``list is sorted`` goodSort)
// Ok, passed 100 tests.

And if we test a bad implementation, the combined property fails as well.

let badSort aList = []
Check.Quick (``list is sorted`` badSort)
// Falsifiable, after 1 test (0 shrinks)
// [0]

But there’s a problem now. Which of the two properties failed?
What we would like to do is add a “label” to each property so that we can tell them

apart. In FsCheck, this is done with the |@ operator:

let ``list is sorted (labelled)``sortFn (aList:int list) =
let prop1 = ``adjacent pairs from a list should be ordered`` sortFn

aList
|@ "adjacent pairs from a list should be ordered"

let prop2 = ``a sorted list has same contents as the original list``
sortFn aList

|@ "a sorted list has same contents as the original list"
prop1 .&. prop2

And now, when we test with the bad sort, we get a message Label of failing
property: a sorted list has same contents as the original list:

Check.Quick (``list is sorted (labelled)`` badSort)
// Falsifiable, after 1 test (2 shrinks)
// Label of failing property: a sorted list has same contents as the
// original list
// [0]

For more on these operators, see the FsCheck documentation under “And, Or and
Labels”.

And now, back to the property-divising strategies.

154

https://fscheck.github.io/FsCheck/Properties.html#And-Or-and-Labels
https://fscheck.github.io/FsCheck/Properties.html#And-Or-and-Labels

18.7. “Solving a smaller problem”

18.7. “Solving a smaller problem”
Sometimes you have a recursive data structure or a recursive problem. In these cases,
you can often find a property that is true of a smaller part.

For example, for a sort, we could say something like:

A list is sorted if:
* The first element is smaller (or equal to) the second.
* The rest of the elements after the first element are also sorted.

Here is that logic expressed in code:

let rec ``First element is <= than second, and tail is also sorted``
sortFn (aList:int list) =

let sortedList = aList |> sortFn
match sortedList with
| [] -> true
| [first] -> true
| [first;second] ->

first <= second
| first::second::tail ->

first <= second &&
let subList = second::tail
``First element is <= than second, and tail is also sorted``

sortFn subList

This property is satisfied by the real sort function:

let goodSort = List.sort
Check.Quick (``First element is <= than second, and tail is also sorted``

goodSort)
// Ok, passed 100 tests.

But unfortunately, just like previous examples, the malicious implementations also
pass.

let badSort aList = []
Check.Quick (``First element is <= than second, and tail is also sorted``

badSort)
// Ok, passed 100 tests.

let badSort2 aList =
match aList with
| [] -> []
| head::_ -> List.replicate (List.length aList) head

Check.Quick (``First element is <= than second, and tail is also sorted``
badSort2)

// Ok, passed 100 tests.

So as before, we’ll need another property (such as the has same contents invariant)
to ensure that the code is correct.

If you do have a recursive data structure, then try looking for recursive properties.
They are pretty obvious and low hanging, when you get the hang of it.

155

18. Choosing properties for property-based testing - Scott Wlaschin

18.8. Is the EDFH really a problem?
In the last few examples, I’ve noted that trivial but wrong implementations often
satisfy the properties as well as good implementations. But should we really spend
time worrying about this? I mean, if we ever really released a sort algorithm that just
duplicated the first element it would be obvious immediately, surely?

So yes, it’s true that truly malicious implementations are unlikely to be a problem.
On the other hand, you should think of property-based testing not as a testing pro-
cess, but as a design process – a technique that helps you clarify what your system is
really trying to do. And if a key aspect of your design is satisfied with just a simple
implementation, then perhaps there is something you have overlooked – something
that, when you discover it, will make your design both clearer and more robust.

18.9. “The more things change, the more they stay the
same”

Our next type of property is “idempotence”. Idempotence simply means that doing
something twice is the same as doing it once. If I tell you to “sit down” and then tell
you to “sit down” again, the second command has no effect.

Idempotence is essential for reliable systems and is a key aspect of service oriented
and message-based architectures. If you are designing these kinds of real-world sys-
tems it is well worth ensuring that your requests and processes are idempotent. I
won’t go too much into this right now, but let’s look at two simple examples.

First, our old friend sort is idempotent (ignoring stability) while reverse is not,
obviously.

let ``sorting twice gives the same result as sorting once`` sortFn
(aList:int list) =

let sortedOnce = aList |> sortFn
let sortedTwice = aList |> sortFn |> sortFn
sortedOnce = sortedTwice

// test
let goodSort = List.sort
Check.Quick (``sorting twice gives the same result as sorting once``

goodSort)
// Ok, passed 100 tests.

In general, any kind of query should be idempotent, or to put it another way: “asking
a question should not change the answer”. In the real world, this may not be the case.
A simple query on a datastore run at different times may give different results.

Here’s a quick demonstration. First we’ll create a NonIdempotentService that gives
different results on each query.

type NonIdempotentService() =
let mutable data = 0
member this.Get() =

data

156

https://queue.acm.org/detail.cfm?id=2187821
http://soapatterns.org/design_patterns/idempotent_capability
https://en.wikipedia.org/wiki/Command%E2%80%93query_separation
https://en.wikipedia.org/wiki/Command%E2%80%93query_separation

18.9. “The more things change, the more they stay the same”

member this.Set value =
data <- value

let ``querying NonIdempotentService after update gives the same result``
value1 value2 =

let service = NonIdempotentService()
service.Set value1

// first GET
let get1 = service.Get()

// another task updates the data store
service.Set value2

// second GET called just like first time
let get2 = service.Get()
get1 = get2

But if we test it now, we find that it does not satisfy the required idempotence prop-
erty:

Check.Quick ``querying NonIdempotentService after update gives the same result``
// Falsifiable, after 2 tests

As an alternative, we can create a (crude) IdempotentService that requires a times-
tamp for each transaction. In this design, multiple GETs using the same timestamp
will always retrieve the same data.

type IdempotentService() =
let mutable data = Map.empty
member this.GetAsOf (dt:DateTime) =

data |> Map.find dt
member this.SetAsOf (dt:DateTime) value =

data <- data |> Map.add dt value

let ``querying IdempotentService after update gives the same result``
value1 value2 =

let service = IdempotentService()
let dt1 = DateTime.Now.AddMinutes(-1.0)
service.SetAsOf dt1 value1

// first GET
let get1 = service.GetAsOf dt1

// another task updates the data store
let dt2 = DateTime.Now
service.SetAsOf dt2 value2

// second GET called just like first time
let get2 = service.GetAsOf dt1
get1 = get2

157

18. Choosing properties for property-based testing - Scott Wlaschin

And this one works:

Check.Quick ``querying IdempotentService after update gives the same result``
// Ok, passed 100 tests.

So, if you are building a REST GET handler or a database query service, and you want
idempotence, you should consider using techniques such as etags, “as-of” times, date
ranges, etc. If you need tips on how to do this, searching for idempotency patterns
will turn up some good results.

18.10. “Two heads are better than one”
And finally, last but not least, we come to the “test oracle”. A test oracle is simply an
alternative implementation that gives the right answer, and that you can check your
results against.

Often the test oracle implementation is not suitable for production – it’s too slow, or
it doesn’t parallelize, or it’s too poetic, etc., but that doesn’t stop it being very useful
for testing. So for “list sort”, there are many simple but slow implementations around.
For example, here’s a quick implementation of insertion sort:

module InsertionSort =

// Insert a new element into a list by looping over the list.
// As soon as you find a larger element, insert in front of it
let rec insert newElem list =

match list with
| head::tail when newElem > head ->

head :: insert newElem tail
| other -> // including empty list

newElem :: other

// Sorts a list by inserting the head into the rest of the list
// after the rest have been sorted
let rec sort list =

match list with
| [] -> []
| head::tail ->

insert head (sort tail)

// test
// insertionSort [5;3;2;1;1]

With this in place, we can write a property that tests the result against insertion sort.

let ``sort should give same result as insertion sort`` sortFn (aList:int list) =
let sorted1 = aList |> sortFn
let sorted2 = aList |> InsertionSort.sort
sorted1 = sorted2

158

http://blog.jonathanoliver.com/idempotency-patterns/
https://xkcd.com/1026/

18.11. Generating Roman numerals in two different ways

When we test the good sort, it works. Good!

let goodSort = List.sort
Check.Quick (``sort should give same result as insertion sort`` goodSort)
// Ok, passed 100 tests.

And when we test a bad sort, it doesn’t. Even better!

let badSort aList = aList
Check.Quick (``sort should give same result as insertion sort`` badSort)
// Falsifiable, after 4 tests (6 shrinks)
// [1; 0]

18.11. Generating Roman numerals in two different ways
We can also use the test oracle approach to cross-check two different implementations
when you’re not sure that either implementation is right!

For example, in my post “Commentary on ‘Roman Numerals Kata with Commen-
tary’ ” I came up with two completely different algorithms for generating Roman
Numerals. Can we compare them to each other and test them both in one fell swoop?
The first algorithm was based on understanding that Roman numerals were based on
tallying, leading to this simple code:

let arabicToRomanUsingTallying arabic =
(String.replicate arabic "I")

.Replace("IIIII","V")

.Replace("VV","X")

.Replace("XXXXX","L")

.Replace("LL","C")

.Replace("CCCCC","D")

.Replace("DD","M")
// optional substitutions
.Replace("IIII","IV")
.Replace("VIV","IX")
.Replace("XXXX","XL")
.Replace("LXL","XC")
.Replace("CCCC","CD")
.Replace("DCD","CM")

Another way to think about Roman numerals is to imagine an abacus. Each wire
has four “unit” beads and one “five” bead. This leads to the so-called “bi-quinary”
approach:

let biQuinaryDigits place (unit,five,ten) arabic =
let digit = arabic % (10*place) / place
match digit with
| 0 -> ""
| 1 -> unit
| 2 -> unit + unit

159

18. Choosing properties for property-based testing - Scott Wlaschin

| 3 -> unit + unit + unit
| 4 -> unit + five // changed to be one less than five
| 5 -> five
| 6 -> five + unit
| 7 -> five + unit + unit
| 8 -> five + unit + unit + unit
| 9 -> unit + ten // changed to be one less than ten
| _ -> failwith "Expected 0-9 only"

let arabicToRomanUsingBiQuinary arabic =
let units = biQuinaryDigits 1 ("I","V","X") arabic
let tens = biQuinaryDigits 10 ("X","L","C") arabic
let hundreds = biQuinaryDigits 100 ("C","D","M") arabic
let thousands = biQuinaryDigits 1000 ("M","?","?") arabic
thousands + hundreds + tens + units

We now have two completely different algorithms, and we can cross-check them with
each other to see if they give the same result.

let ``biquinary should give same result as tallying`` arabic =
let tallyResult = arabicToRomanUsingTallying arabic
let biquinaryResult = arabicToRomanUsingBiQuinary arabic
tallyResult = biquinaryResult

But if we try running this code, we get a ArgumentException: The input must be
non-negative due to the String.replicate call.

Check.Quick ``biquinary should give same result as tallying``
// ArgumentException: The input must be non-negative.

So we need to only include inputs that are positive. We also need to exclude numbers
that are greater than 4000, say, since the algorithms break down there too. How can
we implement this filter?

We saw in the previous post that we could use preconditions. But for this exam-
ple, we’ll try something different and change the generator. First we’ll define a new
arbitrary integer called arabicNumber which is filtered as we want (an “arbitrary” is
a combination of a generator algorithm and a shrinker algorithm, as described in the
previous post).

let arabicNumber = Arb.Default.Int32() |> Arb.filter (fun i -> i > 0
&& i <= 4000)

Next, we create a new property which is constrained to only use “arabicNumber” by using
the Prop.forAll helper.

We’ll give the property the rather clever name of “for all values of arabicNumber,
biquinary should give same result as tallying”.

let ``for all values of arabicNumber biquinary should give same result
as tallying`` =

Prop.forAll arabicNumber ``biquinary should give same result as
tallying``

160

18.12. “Model-based” testing

Now finally, we can do the cross-check test:

Check.Quick ``for all values of arabicNumber biquinary should give same
result as tallying``

// Ok, passed 100 tests.

And we’re good! Both algorithms work correctly, it seems.

18.12. “Model-based” testing
“Model-based” testing, which we will discuss in more detail in a later post, is a variant
on having a test oracle. The way it works is that, in parallel with your (complex)
system under test, you create a simplified model. Then, when you do something to
the system under test, you do the same (but simplified) thing to your model. At the
end, you compare your model’s state with the state of the system under test. If they
are the same, you’re done. If not, either your SUT is buggy or your model is wrong
and you have to start over!

18.13. Interlude: A game based on finding properties
With that, we have come to the end of the various property categories. We’ll go over
them one more time in a minute – but first, an interlude.

If you sometimes feel that trying to find properties is a mental challenge, you’re
not alone. Would it help to pretend that it is a game? As it happens, there is a
game based on property-based testing. It’s called Zendo and it involves placing sets
of objects (such as plastic pyramids) on a table, such that each layout conforms to a
pattern – a rule – or as we would now say, a property!.

The other players then have to guess what the rule (property) is, based on what
they can see. Here’s a picture of a Zendo game in progress (figure 18.17).

The white stones mean the property has been satisfied, while black stones mean
failure. Can you guess the rule here? I’m going to guess that it’s something like “a
set must have a yellow pyramid that’s not touching the ground”.

Alright, I suppose Zendo wasn’t really inspired by property-based testing, but it
is a fun game, and it has even been known to make an appearance at programming
conferences. If you want to learn more about Zendo, the rules are here.

18.14. Applying the categories one more time
With all these categories in hand, let’s look at one more example problem, and see if
we can find properties for it. This sample is based on the well-known Dollar example
described in Kent Beck’s “TDD By Example” book.

Nat Pryce, of Growing Object-Oriented Software Guided by Tests fame, wrote a blog
post about property-based testing a while ago (“Exploring Test-Driven Development
with QuickCheck”). In it, he expressed some frustration about property-based testing
being useful in practice. So let’s revisit the example he referenced and see what we
can do with it.

161

http://boardgamegeek.com/boardgame/6830/zendo
http://blog.fogus.me/2014/10/23/games-of-interest-zendo/
http://blog.fogus.me/2014/10/23/games-of-interest-zendo/
http://www.looneylabs.com/rules/zendo
http://www.growing-object-oriented-software.com/
http://www.natpryce.com/articles/000795.html
http://www.natpryce.com/articles/000795.html

18. Choosing properties for property-based testing - Scott Wlaschin

Figure 18.17.: Zendo

We’re not going to attempt to critique the design itself and make it more type-
driven – others have done that. Instead, we’ll take the design as given and see what
properties we can come up with. So what do we have?

• A Dollar class that stores an Amount.

• Methods Add and Times that transform the amount in the obvious way.

// OO style class with members
type Dollar(amount:int) =

member val Amount = amount with get, set
member this.Add add =

this.Amount <- this.Amount + add
member this.Times multiplier =

this.Amount <- this.Amount * multiplier
static member Create amount =

Dollar amount

So, first let’s try it out interactively to make sure it works as expected:

let d = Dollar.Create 2
d.Amount // 2
d.Times 3
d.Amount // 6
d.Add 1
d.Amount // 7

162

http://spin.atomicobject.com/2014/12/10/typed-language-tdd-part2/

18.14. Applying the categories one more time

But that’s just playing around, not real testing. So what kind of properties can we
think of? Let’s run through them all again:

• Different paths to same result

• Inverses

• Invariants

• Idempotence

• Structural induction

• Easy to verify

• Test oracle

Let’s skip the “different paths” one for now. What about inverses? Are there any
inverses we can use? Yes, the setter and getter form an inverse that we can create a
property from:

let ``set then get should give same result`` value =
let obj = Dollar.Create 0
obj.Amount <- value
let newValue = obj.Amount
value = newValue

Check.Quick ``set then get should give same result``
// Ok, passed 100 tests.

Idempotence is relevant too. For example, doing two sets in a row should be the same
as doing just one. Here’s a property for that:

let ``set amount is idempotent`` value =
let obj = Dollar.Create 0
obj.Amount <- value
let afterFirstSet = obj.Amount
obj.Amount <- value
let afterSecondSet = obj.Amount
afterFirstSet = afterSecondSet

Check.Quick ``set amount is idempotent``
// Ok, passed 100 tests.

Any “structural induction” properties? No, not relevant to this case. Any “easy to
verify” properties? Not anything obvious. Finally, is there a test oracle? No. Again
not relevant, although if we really were designing a complex currency management
system, it might be very useful to cross-check our results with a third party system.

163

18. Choosing properties for property-based testing - Scott Wlaschin

18.14.1. Properties for an immutable Dollar
A confession! I cheated a bit in the code above and created a mutable class, which is
how most OO objects are designed.

But in “TDD by Example” , Kent quickly realizes the problems with that and
changes it to an immutable class, so let me do the same. Here’s the immutable version:

type Dollar(amount:int) =
member val Amount = amount
member this.Add add =

Dollar (amount + add)
member this.Times multiplier =

Dollar (amount * multiplier)
static member Create amount =

Dollar amount

// interactive test
let d1 = Dollar.Create 2
d1.Amount // 2
let d2 = d1.Times 3
d2.Amount // 6
let d3 = d2.Add 1
d3.Amount // 7

What’s nice about immutable code is that we can eliminate the need for testing of
setters, so the two properties we just created have now become irrelevant! To tell the
truth they were pretty trivial anyway, so it’s no great loss.

So then, what new properties can we devise now? Let’s look at the Times method.
How can we test that? Which one of the strategies can we use? I think the “different
paths to same result” is very applicable. We can do the same thing we did with “sort”
and do a times operation both “inside” and “outside” and see if they give the same
result.

Figure 18.18.: Dollar times

Here’s that property expressed in code:

let ``create then times should be same as times then create`` start
multiplier =

164

18.14. Applying the categories one more time

let d0 = Dollar.Create start
let d1 = d0.Times(multiplier)
let d2 = Dollar.Create (start * multiplier)
d1 = d2

Great! Let’s see if it works!

Check.Quick ``create then times should be same as times then create``
// Falsifiable, after 1 test

Oops – it doesn’t work! Why not? Because we forgot that Dollar is a reference type
and doesn’t compare equal by default! As a result of this mistake, we have discovered
a property that we might have overlooked! Let’s encode that before we forget.

let ``dollars with same amount must be equal`` amount =
let d1 = Dollar.Create amount
let d2 = Dollar.Create amount
d1 = d2

Check.Quick ``dollars with same amount must be equal``
// Falsifiable, after 1 test

So now we need to fix this by adding support for IEquatable and so on. You can do
that if you like – I’m going to switch to F# record types and get equality for free!

18.14.2. Dollar properties – version 3
Here’s the Dollar rewritten again:

type Dollar = {amount:int }
with
member this.Add add =

{amount = this.amount + add }
member this.Times multiplier =

{amount = this.amount * multiplier }
static member Create amount =

{amount=amount}

And now our two properties are satisfied:

Check.Quick ``dollars with same amount must be equal``
// Ok, passed 100 tests.

Check.Quick ``create then times should be same as times then create``
// Ok, passed 100 tests.

We can extend this approach for different paths. For example, we can extract the
amount and compare it directly, like this: The code looks like this:

165

18. Choosing properties for property-based testing - Scott Wlaschin

Figure 18.19.: Dollar times

let ``create then times then get should be same as times`` start multiplier =
let d0 = Dollar.Create start
let d1 = d0.Times(multiplier)
let a1 = d1.amount
let a2 = start * multiplier
a1 = a2

Check.Quick ``create then times then get should be same as times``
// Ok, passed 100 tests.

And we can also include Add in the mix as well.
For example, we can do a Times followed by an Add via two different paths, like

this:

Figure 18.20.: Dollar times

And here’s the code:

let ``create then times then add should be same as times then add then
create`` start multiplier adder =

let d0 = Dollar.Create start
let d1 = d0.Times(multiplier)
let d2 = d1.Add(adder)
let directAmount = (start * multiplier) + adder
let d3 = Dollar.Create directAmount
d2 = d3

166

18.14. Applying the categories one more time

Check.Quick ``create then times then add should be same as times then
add then create``

// Ok, passed 100 tests.

So this “different paths, same result” approach is very fruitful, and we can generate
lots of paths this way.

18.14.3. Dollar properties – version 4
Shall we call it done then? I would say not! We are beginning to get a whiff of a code
smell. All this (start * multiplier) + adder code seems like a bit of duplicated
logic, and could end up being brittle.

Can we abstract out some commonality that is present all these cases? If we think
about it, our logic is really just this:

• Transform the amount on the “inside” in some way.

• Transform the amount on the “outside” in the same way.

• Make sure that the results are the same.

But to test this, the Dollar class is going to have to support an arbitrary transform!
Let’s call it Map! Now all our tests can be reduced to this one property:

Figure 18.21.: Dollar map

Let’s add a Map method to Dollar. And we can also rewrite Times and Add in terms
of Map:

type Dollar = {amount:int }
with
member this.Map f =

{amount = f this.amount}
member this.Times multiplier =

this.Map (fun a -> a * multiplier)
member this.Add adder =

this.Map (fun a -> a + adder)
static member Create amount =

{amount=amount}

167

18. Choosing properties for property-based testing - Scott Wlaschin

Now the code for our property looks like this:

let ``create then map should be same as map then create`` start f =
let d0 = Dollar.Create start
let d1 = d0.Map f
let d2 = Dollar.Create (f start)
d1 = d2

But how can we test it now? What functions should we pass in? Don’t worry! FsCheck
has you covered! In cases like this, FsCheck will actually generate random functions
for you too! Try it – it just works!

Check.Quick ``create then map should be same as map then create``
// Ok, passed 100 tests.

Our new “map” property is much more general than the original property using
“times”, so we can eliminate the latter safely.

18.14.4. Logging the function parameter
There’s a little problem with the property as it stands. If you want to see what the
function is that FsCheck is generating, then Verbose mode is not helpful.

Check.Verbose ``create then map should be same as map then create``

Gives the output:

0:
18
<fun:Invoke@3000>
1:
7
<fun:Invoke@3000>
-- etc
98:
47
<fun:Invoke@3000>
99:
36
<fun:Invoke@3000>
Ok, passed 100 tests.

We can’t tell what the function values actually were.
However, you can tell FsCheck to show more useful information by wrapping your

function in a special F case, like this:

let ``create then map should be same as map then create2`` start (F (_,f)) =
let d0 = Dollar.Create start
let d1 = d0.Map f
let d2 = Dollar.Create (f start)
d1 = d2

168

18.15. TDD vs. property-based testing

And now when you use Verbose mode. . .

Check.Verbose ``create then map should be same as map then create2``

. . . you get a detailed log of each function that was used:

0:
0
{ 0->1 }
1:
0
{ 0->0 }
2:
2
{ 2->-2 }
-- etc
98:
-5
{ -5->-52 }
99:
10
{ 10->28 }
Ok, passed 100 tests.

Each { 2->-2 }, { 10->28 }, etc., represents the function that was used for that
iteration.

18.15. TDD vs. property-based testing
How does property-based testing (PBT) fit in with TDD? This is a common question,
so let me quickly give you my take on it.

First off, TDD works with specific examples, while PBT works with universal properties.
As I said in the previous post, I think examples are useful as a way into a design,

and can be a form of documentation. But in my opinion, relying only on example-
based tests would be a mistake.

Property-based approaches have a number of advantages over example-based tests:

• Property-based tests are more general, and thus are less brittle.

• Property-based tests provide a better and more concise description of require-
ments than a bunch of examples.

• As a consequence, one property-based test can replace many, many, example-
based tests.

• By generating random input, property-based tests often reveal issues that you
have overlooked, such as dealing with nulls, missing data, divide by zero, nega-
tive numbers, etc.

• Property-based tests force you to think.

169

18. Choosing properties for property-based testing - Scott Wlaschin

• Property-based tests force you to have a clean design.

These last two points are the most important for me. Programming is not a matter
of writing lines of code, it is about creating a design that meets the requirements. So,
anything that helps you think deeply about the requirements and what can go wrong
should be a key tool in your personal toolbox!

For example, in the Roman Numeral section, we saw that accepting int was a bad
idea (the code broke!). We had a quick fix, but really we should model the concept of
a PositiveInteger in our domain, and then change our code to use that type rather
than just an int. This demonstrates how using PBT can actually improve your domain
model, not just find bugs.

Similarly, introducing a Map method in the Dollar scenario not only made testing
easier, but actually improved the usefulness of the Dollar “api”. Stepping back to look
at the big picture, though, TDD and property-based testing are not at all in conflict.
They share the same goal of building correct programs, and both are really more about
design than coding (think “Test-driven design” rather than “Test-driven development”).

18.16. The end, at last
So that brings us to the end of another long post on property-based testing! I hope
that you now have some useful approaches that you can take away and apply to your
own code base. Next time, we’ll look at some real-world examples, and how you can
create custom generators that match your domain.

The code samples used in this post are available on GitHub.

170

https://github.com/swlaschin/PropertyBasedTesting/blob/master/part2.fsx

19. Finding Property Tests - Hillel
Wayne

William Yao: More starting points for figuring out what properties to test.

Original article: [18]

A while back I was ranting about APLs and included this python code to get the
mode of a list:

def mode(l):
max = None
count = {}
for x in l:

if x not in count:
count[x] = 0

count[x] += 1
if not max or count[x] > count[max]:

max = x
return max

There’s a bug in it. Do you see it? If not, try running it on the list [0, 0, 1]:

>>> mode([0, 0, 1])
1

The issue is that 0 is falsy, so if max is 0, if not max is true.
I could say this bug was a result of carelessness. I didn’t write any tests for this

function, just tried a few obvious examples and thought “yeah it works”. But I don’t
think writing bespoke manual unit tests would have caught this. To surface the bug,
the mode of a list must be a falsy value like 0 or [] and the last value of the list must
be something else. It’s a small intersection of Python’s typing and the mechanics of
mode, making it too unusual a case to be found by standard unit testing practice.

A different testing style is property based testing (PBT) with contracts. By generat-
ing a random set of inputs, we cover more of the state space than we’d do manually.
The problem with PBT, though, is that it can be hard to find good properties. I’d like
to take mode as a case study in what properties we could come up with. There are a
few things I’m looking for:

• The property test should find the bug.

• The test should be simple. I’m presumably not putting a lot of effort into testing
such a simple function, so a complex test doesn’t accurately capture what I’d
do.

171

https://www.hillelwayne.com/post/contracts/

19. Finding Property Tests - Hillel Wayne

• The test should be obvious. I’m looking for a natural test that finds the bug, not
a post-hoc one. Catching a bug with tests is much less believable if you already
know what you’re looking for.

So, let’s talk some tests and contracts! I’m using hypothesis for the property tests,
dpcontracts for my contracts library, pytest for the runner1. For the sake of this
problem, assume we’re only passing in nonempty lists.

@require("l must not be empty", lambda args: len(args.l) > 0)
def mode(l):

...

19.1. Contract-wise
One property of a function is “all of the contracts are satisfied”. We can use this to
write “thin” tests, where we don’t put any assertions in the test itself. If any of our
contracts raise an error then the test will fail.

@given(lists(integers(), min_size=1))
def test_mode(l):

mode(l)

19.1.1. Types
Typically in dynamic programming languages, contracts are used as a poor replace-
ment of a static type system. Instead of checking the type at compile time, people
check the type at runtime. Most contract libraries are heavily geared towards this
kind of use.

@ensure("result is an int", lambda _, r: isinstance(r, int))

This is a bad contract for three reasons:

1. It requires the function to return integers when it’s currently generic. We could
try to make it generic by doing something like type(a.l) == type(r), but ugh.

2. We should be using mypy for type checks anyway.

3. It doesn’t actually find the error. The problem isn’t the type, it’s that we got the
wrong result.

1 Oddly enough I’m getting increasingly less
sold on using pytest, purely because I want to ex-
periment with weird janky metaprogramming in
my tests and pytest doesn’t really support that.

172

http://hypothesis.works/
https://github.com/deadpixi/contracts
https://docs.pytest.org/en/latest/

19.1. Contract-wise

Sanity Checking

We can go further than replicating static types. One common type of contract is a
“sanity check”: some property that does not fully specify our code, but is easy to
express and should hold true anyway. For example, we know the mode will be an
element of the list, so why not check that we’re returning an element of the list?

@ensure("result is in list", lambda a, r: r in a.l)

This is a pretty good contract! It tells us useful things about the function, and it’s
not easily replacable with a typecheck. If I was writing production code I’d probably
write a lot of contracts like this. But it also doesn’t find the problem, so we need to go
further.

19.1.2. First element
Our sanity check was only minimally related to our function. There are lots of func-
tions that return elements in the list: head, random_element, last, etc. The issue is
a subtle bug in our implementation. Our contract should express some important
property about our function. In mode’s case, it should relate to the count of the value.

One extremely useful property is adding bounds. The mode of a list is the element
that occurs most frequently. Every element of the list should occur less often, or as
often, as the mode2. One good arbitrary element is the first element:

@ensure("result > arbitrary",
lambda a, r: a.l.count(r) >= a.l.count(a.l[0]))

This finds the bug!

args = ([0, 0, 1],), kwargs = {}, rargs = Args(l=[0, 0, 1])
result = 1
E dpcontracts.PostconditionError: result > arbitrary

Personally, I’d prefer this as a property test clause instead of a contract clause. It
doesn’t feel “right” to me. I think it’s more an aesthetic judgment than a technical one
here.

@given(lists(integers(), min_size=1))
def test_mode(l):

x = mode(l)
assert l.count(x) >= l.count(l[0])

Either way, this is only a partial contract: while it will catch some incorrect outputs, it
won’t catch them all. We could get this with [1, 0, 0, 2]: count(0) > count(2) >=
count(1), but our broken function would return 2. In some cases, this is all we can
feasibly get. For simpler functions, though, we can rule out all incorrect outputs. We
want a total contract, one which always raises on an incorrect output and never raises
on a correct one.

2 We have to say “less than or equal to” for two
reasons. First, the mode is not strictly more fre-
quent than other elements, like in [1, 1, 2, 2].

Second, what if the mode is l[0]?

173

19. Finding Property Tests - Hillel Wayne

19.1.3. The dang definition
Why not just use the definition itself?

@ensure("result is the mode",
lambda a, r: all((a.l.count(r) >= a.l.count(x) for x in a.l)))

To make this nicer we can extract this into a dedicated helper contract:

def is_mode(l, m):
return all((l.count(m) >= l.count(x) for x in l))

@ensure("result is the mode", lambda a, r: is_mode(a.l, r))

This also catches the error.

args = ([0, 0, 1],), kwargs = {}, rargs = Args(l=[0, 0, 1])
result = 1

This is the same faulty input as before. Property-based Testing libraries shrink inputs
to find the smallest possible error, which is [0, 0, 1].

Compare to an Oracle

If we had another way of getting the answer that we knew was correct, we could just
compare the two results and see if they’re the same. This is called using an oracle.
Oracles are often a good choice when you’re trying to refactor a complex function or
optimize an expensive one. For our purposes, it goes too far.

from collections import Counter

def math_mode(l):
c = Counter(l)
return c.most_common(1)[0][0]

@require("l must not be empty", lambda args: len(args.l) > 0)
@ensure("result matches oracle", lambda a, r: r == math_mode(a.l))
def mode(l):

...

This is too heavy. Not only is it cumbersome, but it overconstrains what the mode
can be. We see this in the error it finds: it finds an error with a smaller input than the
other two!

args = ([0, 1],), kwargs = {}, rargs = Args(l=[0, 1]), result = 1

We haven’t precisely defined the semantics of mode. If there are two values which tie
for the most elements, which is the mode? Our prior contracts didn’t say: as long
as we picked an element that had at least as many instances as any other element,
we were good. With math_mode, we’re arbitrarily choosing one of them as the “real”
mode and checking that our mode picked that arbitrary element. We can see this better
by writing a manual test:

174

19.2. Property-wise

def test_mode():
mode([3, 2, 2, 3])

...

args = ([3, 2, 2, 3],), kwargs = {}, rargs = Args(l=[3, 2, 2, 3])
result = 2

Whereas with our previous contract passes on this.

19.2. Property-wise
Our contract approach converged on “testing the definition” as the best result. There
are many cases where code-under-test does not have a nice mathematical definition.
Contracts are still useful here, as they can rule out bad cases, but you’ll need addi-
tional tests.

Hypothetically contracts can express all possible properties of a function. In practice
you’re limited to what your framework can express and check. For most complicated
properties we’re better off sticking it in a dedicated test.

“Property-wise” property tests have several advantages over “contract-wise” prop-
erty tests:

1. We can test properties that aren’t “ergonomic” in our contract framework.

2. We can test properties that involve effects.

3. We can test metamorphic relations which involve comparing multiple function
calls.

For this mode problem we don’t need any of them, but let’s show off some possible
tactics anyway.

19.2.1. Preserving Transformation
We find some transformation of the input that should give the same output. For lists,
a good transformation is sorting3. The mode of a list doesn’t change if you sort it:

@given(lists(integers(), min_size=1))
def test_sorting_preserves_mode(l):

assert mode(l) == mode(sorted(l))

...

l = [0, 0, -1]

We could also reverse the list instead of sort it, but that gives us an error case of [1,
-1], which again is due to overconstraints.

Or we could assert that the mode doesn’t change if we add it again to the list:

3 Unless you’re trying to test a sorting function.

175

https://www.hillelwayne.com/post/metamorphic-testing/

19. Finding Property Tests - Hillel Wayne

def test_can_add_to_mode(l):
m = mode(l)
assert mode(l + [m]) == m

This does not find the bug, though.

19.2.2. Controlled Transformation
Instead of finding a solution that doesn’t change the answer, we could find one that
changes it in a known way. One of them might be “doubling all of the numbers
doubles the mode”:

@given(lists(integers(), min_size=1))
def test_doubling_doubles_mode(l):

doubled = [x * 2 for x in l]
assert 2*mode(l) == mode(doubled)

This does not find the bug. We could also try “adding 1 to every element adds 1 to
the mode”:

@given(lists(integers(), min_size=1))
def test_incrementing_increments_mode(l):

incremented = [x + 1 for x in l]
assert mode(l)+1 == mode(incremented)

...

l = [0, 1]

It gives the same output as in our overconstrained case, but it only “is wrong” when
we have 0’s anyway. If we restrict the list to only positive integers, it will pass (unlike
our oracle contract).

If we wanted to be extra thorough we could generatively pick both a slope and an
increment:

@given(lists(integers(), min_size=1), integers())
def test_affine_relation(l, m, b):

transformed = [m*x+b for x in l]
assert m*mode(l)+b == mode(transformed)

...

l = [0, 1], m = 1, b = 1

It depends on how paranoid you want to get.

176

19.3. Limitations

19.2.3. Oracle Generators
The big advantage of manual tests to generative ones is that you can come up with
the appropriate outputs for a given input. Since we can’t easily do that in PBT, we’re
stuck testing properties instead of oracles.

Or we could go in reverse: take a random output and generate a corresponding
input. One way we can do that:

1. generate pairs of elements and counts. Make sure that the elements are unique

2. construct a list from that

3. pass in both the list and the corresponding mode, selected from the pair.

@composite
def list_and_mode(draw):

out = []
pairs_max_10 = tuples(integers(), integers(min_value=1, max_value=10))
counts = draw(lists(pairs_max_10,

min_size=1,
max_size=5,
unique_by= lambda x: x[0]))

for number, count in counts:
out += ([number] * count)

mode_of_out = max(counts, key=lambda x: x[1])[0]
return out, mode_of_out

@given(list_and_mode())
def test_can_find_mode(lm):

l, m = lm
assert mode(l) == m

...

lm = ([0, 1], 0)

This overconstrains (we’re not ruling out two pairs having the same counts), but it
does not raise a false positive for [3, 2, 2, 3]. This is because we construct the list
in the same way max interprets the list. If we do

- for number, count in counts:
+ for number, count in reversed(counts):

Then it raises [3, 2] as a “counterexample”. Between the cumbersomeness and the
overconstraining, making an oracle generator is not a good choice for this problem.
There are some cases, though, where it can be more useful.

19.3. Limitations
Here’s a fixed version that looks like it will work:

177

19. Finding Property Tests - Hillel Wayne

def mode(l):
max = None
count = {}
for x in l:

if x not in count:
count[x] = 0

count[x] += 1
+ if max is None or count[x] > count[max]:
- if not max or count[x] > count[max]:

max = x
return max

And this passes all of our tests. But there’s still a bug in it. Again, take a minute to
see if you can find it. If you can’t, try the following:

mode([None, None, 2])

This will select the mode as 2, when it really should be None. The problem isn’t in
our contracts or assertions. It’s in our test generator: we’re only testing with lists of
integers. Hypothesis can generate heterogenous lists, but you still have to explicitly
list the types you want to be in the list. In order to find this bug we’d have to explicitly
realize that None might be a problem for us.

If we only want to call mode on homogenous lists, we should instead use a type-
checker to catch the bug:

+ def mode(l: List[T]) -> T:
- def mode(l):

max = None
+ count = {} # type: Dict[T, int]
- count = {}

This will raise a spurious error, saying that the return value is actually an Optional[T].
If we change max = None to max = l[0] both the error and the bug go away. But we
can change the return value to Optional[T] and the bug remains- mypy can’t actually
detect if we’re passing in a heterogenous list. More type-oriented languages can ban
heterogenous lists outright but even those will miss the bugs our contracts caught.
Static and dynamic analysis are complementary, not contradictory4.

19.3.1. Summary
This was a pretty short dive into what makes a good property or contract. It also
focused on just pure functions: a lot of languages use contracts to maintain class
invariants or monitor the side effects of procedures.

If you’re interested in learning more about properties, chapter 18 is a canonical
article on abstract properties and chapter 14 is a series on applying it to business

4 Both contracts and properties can be checked
statically, but most people using them will be
checking them at runtime. This is because static

analysis of contracts quickly turns into formal ver-
ification, which is really, really hard.

178

19.3. Limitations

problems. If you’re interested in learning more about contracts, I’d recommend. . .
actually, I can’t think of anything that’s not language-specific. Kind of surprising
given how useful they are.

179

19. Finding Property Tests - Hillel Wayne

180

20. Using types to unit-test in Haskell -
Alexis King

William Yao: Introduces a way of doing more “traditional” unit testing for code
with side effects, using mocks and hand-written tests.

Original article: [19]

Object-oriented programming languages make unit testing easy by providing obvious
boundaries between units of code in the form of classes and interfaces. These bound-
aries make it easy to stub out parts of a system to test functionality in isolation, which
makes it possible to write fast, deterministic test suites that are robust in the face of
change. When writing Haskell, it can be unclear how to accomplish the same goals:
even inside pure code, it can become difficult to test a particular code path without
also testing all its collaborators.

Fortunately, by taking advantage of Haskell’s expressive type system, it’s possible
to not only achieve parity with object-oriented testing techniques, but also to provide
stronger static guarantees as well. Furthermore, it’s all possible without resorting to
extra-linguistic hacks that static object-oriented languages sometimes use for mocking,
such as dynamic bytecode generation.

20.1. First, an aside on testing philosophy
Testing methodology is a controversial topic within the larger programming commu-
nity, and there are a multitude of different approaches. This blog post is about unit
testing, an already nebulous term with a number of different definitions. For the pur-
poses of this post, I will define a unit test as a test that stubs out collaborators of the
code under test in some way. Accomplishing that in Haskell is what this is primarily
about.

I want to be clear that I do not think that unit tests are the only way to write tests,
nor the best way, nor even always an applicable way. Depending on your domain,
rigorous unit testing might not even make sense, and other forms of tests (end-to-end,
integration, benchmarks, etc.) might fulfill your needs.

In practice, though, implementing those other kinds of tests seems to be well-
documented in Haskell compared to pure, object-oriented style unit testing. As my
Haskell applications have grown, I have found myself wanting a more fine-grained
testing tool that allows me to both test a piece of my codebase in isolation and also
use my domain-specific types. This blog post is about that.

With that disclaimer out of the way, let’s talk about testing in Haskell.

181

20. Using types to unit-test in Haskell - Alexis King

20.2. Drawing seams using types
One of the primary attributes of unit tests in object-oriented languages, especially
statically-typed ones, is the concept of “seams” within a codebase. These are inter-
nal boundaries between components of a system. Some boundaries are obvious—
interactions with a database, manipulation of the file system, and performing I/O
over the network, to name a few examples—but others are more subtle. Especially in
larger codebases, it can be helpful to isolate two related but distinct pieces of function-
ality as much as possible, which makes them easier to reason about, even if they’re
actually part of the same codebase.

In OO languages, these seams are often marked using interfaces, whether explic-
itly (in the case of static languages) or implicitly (in the case of dynamic ones). By
programming to an interface, it’s possible to create “fake” implementations of that
interface for use in unit tests, effectively making it possible to stub out code that isn’t
directly relevant to the code being tested.

In Haskell, representing these seams is a lot less obvious. Consider a fairly trivial
function that reverses a file’s contents on the file system:

reverseFile :: FilePath -> IO ()
reverseFile path = do

contents <- readFile path
writeFile path (reverse contents)

This function is impossible to test without testing against a real file system. It simply
performs I/O directly, and there’s no way to “mock out” the file system for testing
purposes. Now, admittedly, this function is so trivial that a unit test might not seem
worth the cost, but consider a slightly more complicated function that interacts with
a database:

renderUserProfile :: Id User -> IO HTML
renderUserProfile userId = do

user <- fetchUser userId
posts <- fetchRecentPosts userId

return $ div
[h1 (userName user <> "’s Profile")
, h2 "Recent Posts"
, ul (map (li . postTitle) posts)
]

It might now be a bit more clear that it could be useful to test the above function
without running a real database and doing all the necessary context setup before each
test case. Indeed, it would be nice if a test could just provide stubbed implementations
for fetchUser and fetchRecentPosts, then make assertions about the output.

One way to solve this problem is to pass the results of those two functions to
renderUserProfile as arguments, turning it into a pure function that could be easily
tested. This becomes obnoxious for functions of even just slightly more complexity,
though (it is not unreasonable to imagine needing a handful of different queries to
render a user’s profile page), and it requires significantly restructuring code simply
because the tests need it.

182

20.2. Drawing seams using types

The above code is not only difficult to test, however—it has another problem, too.
Specifically, both functions return IO values, which means they can effectively do any-
thing. Haskell has a very strong type system for typing terms, but it doesn’t provide
any guarantees about effects beyond a simple yes/no answer about function purity.
Even though the renderUserProfile function should really only need to interact with
the database, it could theoretically delete files, send emails, make HTTP requests, or
do any number of other things.

Fortunately, it’s possible to solve both problems—a lack of testability and a lack of
type safety—using the same general technique. This approach is reminiscent of the
interface-based seams of object-oriented languages, but unlike most object-oriented
approaches, it provides additional type safety guarantees without the need to explic-
itly modify the code to support some kind of dependency injection.

20.2.1. Making implicit interfaces explicit
Statically typed, object-oriented languages provide interfaces as a language construct
to encode certain kinds of contracts into the type system, and Haskell has something
similar. Typeclasses are, in many ways, an analog to OO interfaces, and they can
be used in a similar way. In the above case, let’s write down interfaces that the
reverseFile and renderUserProfile functions can use:

class Monad m => MonadFS m where
readFile :: FilePath -> m String
writeFile :: FilePath -> String -> m ()

class Monad m => MonadDB m where
fetchUser :: Id User -> m User
fetchRecentPosts :: Id User -> m [Post]

The really nice thing about these interfaces is that our function implementations don’t
have to change at all to take advantage of them. In fact, all we have to change is their
types:

reverseFile :: MonadFS m => FilePath -> m ()
reverseFile path = do

contents <- readFile path
writeFile path (reverse contents)

renderUserProfile :: MonadDB m => Id User -> m HTML
renderUserProfile userId = do

user <- fetchUser userId
posts <- fetchRecentPosts userId

return $ div
[h1 (userName user <> "’s Profile")
, h2 "Recent Posts"
, ul (map (li . postTitle) posts)
]

183

20. Using types to unit-test in Haskell - Alexis King

This is pretty neat, since we haven’t had to alter our code at all, but we’ve managed to
completely decouple ourselves from IO. This has the direct effect of both making our
code more abstract (we no longer rely on the “real” file system or a “real” database,
which makes our code easier to test) and restricting what our functions can do (just
from looking at the type signatures, we know what side-effects they can perform).

Of course, since we’re now coding against an interface, our code doesn’t actually
do much of anything. If we want to actually use the functions we’ve written, we’ll
have to define instances of MonadFS and MonadDB. When actually running our code,
we’ll probably still use IO (or some monad transformer stack with IO at the bottom),
so we can define trivial instances for that existing use case:

instance MonadFS IO where
readFile = Prelude.readFile
writeFile = Prelude.writeFile

instance MonadDB IO where
fetchUser = SQL.fetchUser
fetchRecentPosts = SQL.fetchRecentPosts

Even if we go no further, this is already incredibly useful. By restricting the sorts of
effects our functions can perform at the type level, it becomes a lot easier to see which
code is interacting with what. This can be invaluable when working in a part of a
moderately large codebase that you are unfamiliar with. Even if the only instance of
these typeclasses is IO, the benefits are immediately apparent.

Of course, this blog post is about testing, so we’re going to go further and take
advantage of these seams we’ve now drawn. The question is: how?

20.3. Testing with typeclasses: an initial attempt
Given that we now have functions depending on an interface instead of IO, we can
create separate instances of our typeclasses for use in tests. Let’s start with the
renderUserProfile function. We’ll create a simple wrapper around the Identity
type, since we don’t actually care much about the “effects” of our MonadDB methods:

import Data.Functor.Identity

newtype TestM a = TestM (Identity a)
deriving (Functor, Applicative, Monad)

unTestM :: TestM a -> a
unTestM (TestM (Identity x)) = x

Now, we’ll create a trivial instance of MonadDB for TestM:

instance MonadDB TestM where
fetchUser _ = return User { userName = "Alyssa" }
fetchRecentPosts _ = return

[Post { postTitle = "Metacircular Evaluator" }]

184

20.3. Testing with typeclasses: an initial attempt

With this instance, it’s now possible to write a simple unit test of the renderUserProfile
function that doesn’t need a real database running at all:

spec = describe "renderUserProfile" $ do
it "shows the user’s name" $ do

let result = unTestM (renderUserProfile (intToId 1234))
result `shouldContainElement` h1 "Alyssa’s Profile"

it "shows a list of the user’s posts" $ do
let result = unTestM (renderUserProfile (intToId 1234))
result `shouldContainElement` ul [li "Metacircular Evaluator"]

This is pretty nice, and running the above tests reveals a nice property of these kinds of
isolated test cases: the test suite runs really, really fast. Communicating with a database,
even in extremely simple ways, takes a measurable amount of time, especially with
dozens of tests. In contrast, even with hundreds of tests, our unit test suite runs in
less than a tenth of a second.

This all seems to be successful, so let’s try and apply the same testing technique to
reverseFile.

20.3.1. Testing side-effectful code
Looking at the type signature for reverseFile, we have a small problem:

reverseFile :: MonadFS m => FilePath -> m ()

Specifically, the return type is (). Making any assertions against the result of this
function would be completely worthless, given that it’s guaranteed to be the same
exact thing each time. Instead, reverseFile is inherently side-effectful, so we want to
be able to test that it properly interacts with the file system in the correct way.

In order to do this, a simple wrapper around Identity won’t be enough, but we can
replace it with something more powerful: Writer. Specifically, we can use a writer
monad to “log” what gets called in order to test side-effects. We’ll start by creating a
new TestM type, just like last time:

newtype TestM a = TestM (Writer [String] a)
deriving (Functor, Applicative, Monad, MonadWriter [String])

logTestM :: TestM a -> [String]
logTestM (TestM w) = execWriter w

Using this slightly more powerful type, we can write a useful instance of MonadFS that
will track the argument given to writeFile:

instance MonadFS TestM where
readFile _ = return "hello"
writeFile _ contents = tell [contents]

Again, the instance is quite simple, but it now enables us to write a straightforward
unit test for reverseFile:

185

20. Using types to unit-test in Haskell - Alexis King

spec = describe "reverseFile" $
it "reverses a file’s contents on the filesystem" $ do

let calls = logTestM (reverseFile "foo.txt")
calls `shouldBe` ["olleh"]

Again, quite simple to both implement and use, and the test itself is blindingly
fast. There’s another problem, though, which is that we have technically left part
of reverseFile untested: we’ve completely ignored the path argument.

In this contrived example, it may seem silly to test something so trivial, but in
real code, it’s quite possible that one would care very much about testing multiple
different aspects about a single function. When testing renderUserProfile, this was
not hard, since we could reuse the same TestM type and MonadDB instance for both test
cases, but in the reverseFile example, we’ve ignored the path entirely.

We could adjust our MonadFS instance to also track the path provided to each method,
but this has a few problems. First, it means every test case would depend on all the
various properties we are testing, which would mean updating every test case when
we add a new one. It would also be simply impossible if we needed to track multiple
types—in this particular case, it turns out that String and FilePath are actually the
same type, but in practice, there may be a handful of disparate, incompatible types.

Both of the above issues could be fixed by creating a sum type and manually filter-
ing out the relevant elements in each test case, but a much more intuitive approach
would be to simply have a separate instance for each case. Unfortunately, in Haskell,
creating a new instance means creating an entirely new type. To illustrate how much
duplication that would entail, we could create the following type and instance for
testing proper propagation of the path argument:

newtype TestM' a = TestM' (Writer [FilePath] a)
deriving (Functor, Applicative, Monad, MonadWriter [FilePath])

logTestM' :: TestM' a -> [FilePath]
logTestM' (TestM' w) = execWriter w

instance MonadFS TestM' where
readFile path = tell [path] >> return ""
writeFile path _ = tell [path]

Now it’s possible to add an extra test case that asserts that the proper path is provided
to the two filesystem functions:

spec = describe "reverseFile" $ do
it "reverses a file’s contents on the filesystem" $ do

let calls = logTestM (reverseFile "foo.txt")
calls `shouldBe` ["olleh"]

it "operates on the file at the provided path" $ do
let paths = logTestM' (reverseFile "foo.txt")
paths `shouldBe` ["foo.txt", "foo.txt"]

This works, but it’s ultimately unacceptably complicated. Our test harness code is
now significantly larger than the actual tests themselves, and the amount of boiler-
plate is frustrating. Verbose test suites are especially bad, since forcing programmers

186

20.4. Creating first-class typeclass instances

to jump through hoops just to implement a single test reduces the likelihood that peo-
ple will actually write good tests, if they write tests at all. In contrast, if writing tests
is easy, then people will naturally write more of them.

The above strategy to writing tests is not good enough, but it does reveal a particular
problem: in Haskell, typeclass instances are not first-class values that can be manipu-
lated and abstracted over, they are static constructs that can only be managed by the
compiler, and users do not have a direct way to modify them. With some cleverness,
however, we can actually create an approximation of first-class typeclass dictionaries,
which will allow us to dramatically simplify the above testing mechanism.

20.4. Creating first-class typeclass instances
In order to provide an easy way to construct instances, we need a way to represent
instances as ordinary Haskell values. This is not terribly difficult, given that instances
are conceptually just records containing a collection of functions. For example, we
could create a datatype that represents an instance of the MonadFS typeclass:

data MonadFSInst m = MonadFSInst
{ _readFile :: FilePath -> m String
, _writeFile :: FilePath -> String -> m ()
}

To avoid namespace clashes with the actual method identifiers, the record fields are
prefixed with an underscore, but otherwise, the translation is remarkably straight-
forward. Using this record type, we can easily create values that represent the two
instances we defined above:

contentInst :: MonadWriter [String] m => MonadFSInst m
contentInst = MonadFSInst

{ _readFile = _ -> return "hello"
, _writeFile = _ contents -> tell [contents]
}

pathInst :: MonadWriter [FilePath] m => MonadFSInst m
pathInst = MonadFSInst

{ _readFile = \path -> tell [path] >> return ""
, _writeFile = \path _ -> tell [path]
}

These two values represent two different implementations of MonadFS, but since they’re
ordinary Haskell values, they can be manipulated and even extended like any other
records. This can be extremely useful, since it makes it possible to create a sort of

“base” instance, then have individual test cases override individual pieces of function-
ality piecemeal.

Of course, although we’ve written these two instances, we have no way to actually
use them. After all, Haskell does not provide a way to explicitly provide typeclass
dictionaries. Fortunately, we can create a sort of “proxy” type that will use a reader to
thread the dictionary around explicitly, and the instance can defer to the dictionary’s
implementation.

187

20. Using types to unit-test in Haskell - Alexis King

20.4.1. Creating an instance proxy
To represent our proxy type, we’ll use a combination of a Writer and a ReaderT; the
former to implement the logging used by instances, and the latter to actually thread
around the dictionary. Our type will look like this:

newtype TestM log a =
TestM (ReaderT (MonadFSInst (TestM log)) (Writer log) a)

deriving (Functor, Applicative, Monad
, MonadReader (MonadFSInst (TestM log))
, MonadWriter log
)

logTestM :: MonadFSInst (TestM log) -> TestM log a -> log
logTestM inst (TestM m) = execWriter (runReaderT m inst)

This might look rather complicated, and it is, but let’s break down exactly what it’s
doing.

1. The TestM type includes two type parameters. The first is the type of value
that will be logged (hence the name log), which corresponds to the argument
to Writer from previous incarnations of TestM. Unlike those types, though, we
want this version to work with any Monoid, so we’ll make it a type parameter.
The second parameter is simply the type of the current monadic value, as before.

2. The type itself is defined as a wrapper around a small monad transformer stack,
the first of which is ReaderT. The state threaded around by the reader is, in this
case, the instance dictionary, which is MonadFSInst.

However, recall that MonadFSInst accepts a type variable—the type of a monad
itself—so we must provide TestM log as an argument to MonadFSInst. This
slight bit of indirection allows us to tie the knot between the mutually dependent
instances and proxy type.

3. The base monad in the transformer stack is Writer, which is used to actually
implement the logging functionality, just like in prior cases. The only difference
now is that the log type parameter now determines what the writer actually
produces.

4. Finally, as before, we use GeneralizedNewtypeDeriving to derive all the relevant
mtl classes, adding the somewhat wordy MonadReader constraint to the list.

Using this single type, we can now implement a MonadFS instance that defers to the
dictionary carried around within TestM’s reader state:

instance Monoid log => MonadFS (TestM log) where
readFile path = do

f <- asks _readFile
f path

writeFile path contents = do
f <- asks _writeFile
f path contents

188

20.4. Creating first-class typeclass instances

This may seem somewhat boilerplate-y, and it is to some extent, but the important
consideration is that this boilerplate only needs to be written once. With this in place,
it’s now possible to write an arbitrary number of first-class instances that use the
above mechanism without extending the mechanism at all.

To see what actually using this code would look like, let’s update the reverseFile
tests to use the new TestM implementation, as well as the contentInst and pathInst
dictionaries from earlier:

spec = describe "reverseFile" $ do
it "reverses a file’s contents on the filesystem" $ do

let calls = logTestM contentInst (reverseFile "foo.txt")
calls `shouldBe` ["olleh"]

it "operates on the file at the provided path" $ do
let paths = logTestM pathInst (reverseFile "foo.txt")
paths `shouldBe` ["foo.txt", "foo.txt"]

We can do a little bit better, though. Really, the definitions of contentInst and
pathInst are specific to each test case. With ordinary typeclass instances, we cannot
scope them to any particular block, but since MonadFSInst is just an ordinary Haskell
datatype, we can manipulate them just like any other Haskell values. Therefore, we
can just inline those instances’ definitions into the test cases themselves to keep them
closer to the actual tests.

spec = describe "reverseFile" $ do
it "reverses a file’s contents on the filesystem" $ do

let contentInst = MonadFSInst
{ _readFile = _ -> return "hello"
, _writeFile = _ contents -> tell [contents]
}

let calls = logTestM contentInst (reverseFile "foo.txt")
calls `shouldBe` ["olleh"]

it "operates on the file at the provided path" $ do
let pathInst = MonadFSInst

{ _readFile = \path -> tell [path] >> return ""
, _writeFile = \path _ -> tell [path]
}

let paths = logTestM pathInst (reverseFile "foo.txt")
paths `shouldBe` ["foo.txt", "foo.txt"]

This is pretty good. We’re now able to create inline instances of our MonadFS type-
class, which allows us to write extremely concise unit tests using ordinary Haskell
typeclasses as system seams. We’ve managed to cut down on the boilerplate consider-
ably, though we still have a couple problems. For one, this example only uses a single
typeclass containing only two methods. A real MonadFS typeclass would likely have
at least a dozen methods for performing various filesystem operations, and writing
out the instance dictionaries for every single method, even the ones that aren’t used
within the code under test, would be pretty frustratingly verbose.

189

20. Using types to unit-test in Haskell - Alexis King

This problem is solvable, though. Since instances are just ordinary Haskell records,
we can create a “base” instance that just throws an exception whenever the method is
called:

baseInst :: MonadFSInst m
baseInst = MonadFSInst

{ _readFile = error "unimplemented instance method ‘_readFile’"
, _writeFile = error "unimplemented instance method ‘_writeFile’"
}

Then code that only uses readFile could only override that particular method, for
example:

let myInst = baseInst { _readFile = ... }

Normally, of course, this would be a terrible idea. However, since this is all just test
code, it can be extremely useful in quickly figuring out what methods need to be
stubbed out for a particular test case. Since all the code actually gets run at test time,
attempts to use unimplemented instance methods will immediately raise an error,
informing the programmer which methods need to be implemented to make the test
pass. This can also help to significantly cut down on the amount of effort it takes to
implement each test.

Another problem is that our approach is specialized exclusively to MonadFS. What
about functions that use both MonadFS and MonadDB, for example? Fortunately, that is
not hard to solve, either. We can adapt the MonadFSInst type to include fields for all
of the typeclasses relevant to our system, turning it into a generic test fixture of sorts:

data FixtureInst m = FixtureInst
{ -- MonadFS

_readFile :: FilePath -> m String
, _writeFile :: FilePath -> String -> m ()

-- MonadDB
, _fetchUser :: Id User -> m User
, _fetchRecentPosts :: Id User -> m [Post]
}

Updating TestM to use FixtureInst instead of MonadFSInst is trivial, and all the rest
of the infrastructure still works. However, this means that every time a new typeclass
is added, three things need to be updated:

1. Its methods need to be added to the FixtureInst record.

2. Those methods need to be given error-raising defaults in the baseInst value.

3. An actual instance of the typeclass needs to be written for TestM that defers to
the FixtureInst value.

Furthermore, most of this manual manipulation of methods is required every time
a particular typeclass changes, whether that means adding a method, removing a

190

20.5. Removing the boilerplate using test-fixture

method, renaming a method, or changing a method’s type. This is especially frus-
trating given that all this code is really just mechanical boilerplate that could all be
derived by the set of typeclasses being tested.

That last point is especially important: aside from the instances themselves, every
piece of boilerplate above is obviously possible to generate from existing types alone.
With that piece of information in mind, we can do even better: we can use Template
Haskell.

20.5. Removing the boilerplate using test-fixture
The above code was not only rather boilerplate-heavy, it was pretty complicated. For-
tunately, you don’t actually have to write it. Enter the library test-fixture:

import Control.Monad.TestFixture
import Control.Monad.TestFixture.TH

mkFixture "FixtureInst" [''MonadFS, ''MonadDB]

spec = describe "reverseFile" $ do
it "reverses a file’s contents on the filesystem" $ do

let contentInst = def
{ _readFile = _ -> return "hello"
, _writeFile = _ contents -> log contents
}

let calls = logTestFixture (reverseFile "foo.txt") contentInst
calls `shouldBe` ["olleh"]

it "operates on the file at the provided path" $ do
let pathInst = def

{ _readFile = \path -> log path >> return ""
, _writeFile = \path _ -> log path
}

let paths = logTestFixture (reverseFile "foo.txt") pathInst
paths `shouldBe` ["foo.txt", "foo.txt"]

That’s it. The above code automatically generates everything you need to write fast,
simple, deterministic unit tests in Haskell. The mkFixture function is a Template
Haskell macro that expands into a definition quite similar to the FixtureInst type we
wrote by hand, but since it’s automatically generated from the typeclass definitions,
it never needs to be updated.

The logTestFixture function replaces the logTestM function we wrote by hand,
but it works exactly the same. The Control.Monad.TestFixture library also exports
a log function that is a synonym for tell . singleton, but using tell directly still
works if you prefer.

The mkFixture function also generates a Default instance, which replaces the baseInst
value defined earlier. It functions the same way, though, producing useful error mes-
sages that refer to the names of unimplemented typeclass methods that have not been
stubbed out.

191

http://hackage.haskell.org/package/test-fixture

20. Using types to unit-test in Haskell - Alexis King

This blog post is not a test-fixture tutorial—indeed, it is much more complicated
than a test-fixture tutorial would be, since it covers what the library is really doing
under the hood—but if you’re interested, I would highly recommend you take a look
at the test-fixture documentation on Hackage.

20.6. Conclusion, credits, and similar techniques
This blog post came about as the result of a need my coworkers and I found when
writing Haskell code; we wanted a way to write unit tests quickly and easily, but we
didn’t find much advice from the rest of the Haskell ecosystem. The test-fixture li-
brary is the result of that exploratory work, and we currently use it to test a significant
portion of our Haskell code.

It would be extremely unfair to suggest that I was the inventor of this technique or
the inventor of the library. Two of my coworkers, Joe Vargas and Greg Wiley, came
up with the general approach and wrote Control.Monad.TestFixture, and I simply
wrote the Template Haskell macro to eliminate the boilerplate. With that in mind, I
think I can say with some fairness that I think this technique is a joy to use when unit
testing is a desirable goal, and I would definitely recommend it if you are interested
in doing isolated testing in Haskell.

The general technique of using typeclasses to emulate effects was in part inspired
by the well-known mtl library. An alternate approach to writing unit-testable Haskell
code is using free monads, but overall, I prefer this approach over free monads be-
cause the typeclass constraints add type safety in ways that free monads do not (at
least not without additional boilerplate), and this approach also lends itself well to
static analysis-based boilerplate reduction techniques. It has its own tradeoffs, though,
so if you’ve had success with free monads, then I certainly make no claim this is a
superior approach, just one that I’ve personally found pleasant.

As a final note, if you do check out test-fixture, feel free to leave feedback by
opening issues on the GitHub issue tracker—even things like confusing documenta-
tion are worth a bug report.

192

http://hackage.haskell.org/package/test-fixture
https://github.com/jxv
https://github.com/aztecrex
https://github.com/cjdev/test-fixture/issues

21. Time Travelling and Fixing Bugs
with Property-Based Testing -
Oskar Wickström

William Yao: Another large-ish case study of using property-based testing, this
time introducing a technique to help ensure that you’re genuinely testing enough
of your code’s input space.

Original article: [20]

Property-based testing (PBT) is a powerful testing technique that helps us find edge
cases and bugs in our software. A challenge in applying PBT in practice is coming up
with useful properties. This tutorial is based on a simple but realistic system under
test (SUT), aiming to show some ways you can test and find bugs in such logic using
PBT. It covers refactoring, dealing with non-determinism, testing generators them-
selves, number of examples to run, and coupling between tests and implementation.
The code is written in Haskell and the testing framework used is Hedgehog.

This tutorial was originally written as a book chapter, and later extracted as a stan-
dalone piece. Since I’m not expecting to finish the PBT book any time soon, I decided
to publish the chapter here.

21.1. System Under Test: User Signup Validation
The business logic we’ll test is the validation of a website’s user signup form. The
website requires users to sign up before using the service. When signing up, a user
must pick a valid username. Users must be between 18 and 150 years old. Stated
formally, the validation rules are:

0 < length(name) ≤ 50
18 < age ≤ 150

(1)

The signup and its validation is already implemented by previous programmers.
There have been user reports of strange behaviour, and we’re going to locate and
fix the bugs using property tests. Poking around the codebase, we find the data type
representing the form:

data SignupForm = SignupForm
{ formName :: Text
, formAge :: Int
} deriving (Eq, Show)

193

http://hackage.haskell.org/package/hedgehog

21. Time Travelling and Fixing Bugs with Property-Based Testing - Oskar Wickström

And the existing validation logic, defined as validateSignup. We won’t dig into to
the implementation yet, only its type signature:

validateSignup
:: SignupForm -> Validation (NonEmpty SignupError) Signup

It’s a pure function, taking SignupForm data as an argument, and returning a Validation
value. In case the form data is valid, it returns a Signup data structure. This data type
resembles SignupForm in its structure, but refines the age as a Natural when valid:

data Signup = Signup
{ name :: Text
, age :: Natural
} deriving (Eq, Show)

In case the form data is invalid, validateSignup returns a non-empty list of SignupError
values. SignupError is a union type of the possible validation errors:

data SignupError
= NameTooShort Text
| NameTooLong Text
| InvalidAge Int
deriving (Eq, Show)

21.1.1. The Validation Type
The Validation type comes from the validation package. It’s parameterized by two
types:

1. the type of validation failures

2. the type of a successfully validated value

The Validation type is similar to the Either type. The major difference is that it
accumulates failures, rather than short-circuiting on the first failure. Failures are accu-
mulated when combining multiple Validation values using Applicative.

Using a non-empty list for failures in the Validation type is common practice. It
means that if the validation fails, there’s at least one error value.

21.2. Validation Property Tests
Let’s add some property tests for the form validation, and explore the existing imple-
mentation. We begin in a new test module, and we’ll need a few imports:

import Data.List.NonEmpty (NonEmpty (..))
import Data.Text (Text)
import Data.Validation
import Hedgehog
import qualified Hedgehog.Gen as Gen
import qualified Hedgehog.Range as Range

194

https://hackage.haskell.org/package/validation
https://hackage.haskell.org/package/base-4.12.0.0/docs/Data-Either.html#t:Either

21.2. Validation Property Tests

Also, we’ll need to import the implementation module:

import Validation

We’re now ready to define some property tests.

21.2.1. A Positive Property Test
The first property test we’ll add is a positive test. That is, a test using only valid input
data. This way, we know the form validation should always be successful. We define
prop_valid_signup_form_succeeds:

prop_valid_signup_form_succeeds = property $ do
let genForm = SignupForm <$> validName <*> validAge -- (1)
form <- forAll genForm -- (2)

case validateSignup form of -- (3)
Success{} -> pure ()
Failure failure' -> do

annotateShow failure'
failure

First, we define genForm (1), a generator producing form data with valid names and
ages. Next, we generate form values from our defined generator (2). Finally, we apply
the validateSignup function and pattern match on the result (3):

• In case it’s successful, we have the test pass with pure ()

• In case it fails, we print the failure' and fail the test

The validName and validAge generators are defined as follows:

validName :: Gen Text
validName = Gen.text (Range.linear 1 50) Gen.alphaNum

validAge :: Gen Int
validAge = Gen.integral (Range.linear 1 150)

Recall the validation rules (eq. 1). The ranges in these generators yielding valid form
data are defined precisely in terms of the validation rules.

The character generator used for names is alphaNum, meaning we’ll only generate
names with alphabetic letters and numbers. If you’re comfortable with regular expres-
sions, you can think of genValidName as producing values matching [a-zA-Z0-9]+.
Let’s run some tests:

λ> check prop_valid_signup_form_succeeds
X<interactive> passed 100 tests.

Hooray, it works.

195

21. Time Travelling and Fixing Bugs with Property-Based Testing - Oskar Wickström

21.2.2. Negative Property Tests
In addition to the positive test, we’ll add negative tests for the name and age, respec-
tively. Opposite to positive tests, our negative tests will only use invalid input data.
We can then expect the form validation to always fail.

First, let’s test invalid names.

prop_invalid_name_fails = property $ do
let genForm = SignupForm <$> invalidName <*> validAge -- (1)
form <- forAll genForm

case validateSignup form of -- (2)
Failure (NameTooLong{} :| []) -> pure ()
Failure (NameTooShort{} :| []) -> pure ()
other -> do -- (3)

annotateShow other
failure

Similar to our the positive property test, we define a generator genForm (1). Note that
we use invalidName instead of validName. Again, we pattern match on the result of
applying validateSignup (2). In this case we expect failure. Both NameTooLong and
NameTooShort are expected failures. If we get anything else, the test fails (3).

The test for invalid age is similar, expect we use the invalidAge generator, and
expect only InvalidAge validation failures:

prop_invalid_age_fails = property $ do
let genForm = SignupForm <$> validName <*> invalidAge
form <- forAll genForm
case validateSignup form of

Failure (InvalidAge{} :| []) -> pure ()
other -> do

annotateShow other
failure

The invalidName and invalidAge generators are also defined in terms of the valida-
tion rules (eq. 1), but with ranges ensuring no overlap with valid data:

invalidName :: Gen Text
invalidName =

Gen.choice [mempty, Gen.text (Range.linear 51 100) Gen.alphaNum]

invalidAge :: Gen Int
invalidAge = Gen.integral (Range.linear minBound 0)

Let’s run our new property tests:

λ> check prop_invalid_name_fails
X<interactive> passed 100 tests.

λ> check prop_invalid_age_fails
X<interactive> passed 100 tests.

All good? Maybe not. The astute reader might have noticed a problem with one of
our generators. We’ll get back to that later.

196

21.3. The Value of a Property

21.2.3. Accumulating All Failures
When validating the form data, we want all failures returned to the user posting
the form, rather than returning only one at a time. The Validation type accumulates
failures when combined with Applicative, which is exactly what we want. Yet, while
the hard work is handled by Validation, we still need to test that we’re correctly
combining validations in validateSignup.

We define a property test generating form data, where all fields are invalid (1). It
expects the form validation to fail, returning two failures (2).

prop_two_failures_are_returned = property $ do
let genForm = SignupForm <$> invalidName <*> invalidAge -- (1)
form <- forAll genForm
case validateSignup form of

Failure failures | length failures == 2 -> pure () -- (2)
other -> do

annotateShow other
failure

This property is weak. It states nothing about which failures should be returned. We
could assert that the validation failures are equal to some expected list. But how do
we know if the name is too long or too short? I’m sure you’d be less thrilled if we
replicated all of the validation logic in this test.

Let’s define a slightly stronger property. We pattern match, extract the two failures
(1), and check that they’re not equal (2).

prop_two_different_failures_are_returned = property $ do
let genForm = SignupForm <$> invalidName <*> invalidAge
form <- forAll genForm
case validateSignup form of

Failure (failure1 :| [failure2]) -> -- (1)
failure1 /== failure2 -- (2)

other -> do
annotateShow other
failure

We’re still not being specific about which failures should be returned. But unlike
prop_two_failures_are_returned, this property at least makes sure there are no du-
plicate failures.

21.3. The Value of a Property
Is there a faulty behaviour that would slip past prop_two_different_failures_are_returned?
Sure. The implementation could have a typo or copy-paste error, and always return
NameTooLong failures, even if the name is too short. Does this mean our property is
bad? Broken? Useless? In itself, this property doesn’t give us strong confidence in
the correctness of validateSignup. In conjuction with our other properties, however,
it provides value. Together they make up a stronger test suite.

Let’s look at it in another way. What are the benefits of weaker properties over
stronger ones? In general, weak properties are beneficial in that they are:

197

21. Time Travelling and Fixing Bugs with Property-Based Testing - Oskar Wickström

1. easier to define

2. likely to catch simple mistakes early

3. less coupled to the SUT

A small investment in a set of weak property tests might catch a lot of mistakes. While
they won’t precisely specify your system and catch the trickiest of edge cases, their
power-to-weight ratio is compelling. Moreover, a set of weak properties is better than
no properties at all. If you can’t formulate the strong property you’d like, instead
start simple. Lure out some bugs, and improve the strength and specificity of your
properties over time.

Coming up with good properties is a skill. Practice, and you’ll get better at it.

21.4. Testing Generators
Remember how in section 21.2.2 we noted that there’s a problem? The issue is, we’re
not covering all validation rules in our tests. But the problem is not in our property
definitions. It’s in one of our generators, namely genInvalidAge. We’re now in a
perculiar situation: we need to test our tests.

One way to test a generator is to define a property specifically testing the values
it generates. For example, if we have a generator positive that is meant to generate
only positive integers, we can define a property that asserts that all generated integers
are positive:

positive :: Gen Int
positive = Gen.integral (Range.linear 1 maxBound)

prop_integers_are_positive = property $ do
n <- forAll positive
assert (n >= 1)

We could use this technique to check that all values generated by validAge are valid.
How about invalidAge? Can we check that it generates values such that all bound-
aries of our validation function are hit? No, not using this technique. Testing the
correctness of a generator using a property can only find problems with individual
generated values. It can’t perform assertions over all generated values. In that sense,
it’s a local assertion.

Instead, we’ll find the generator problem by capturing statistics on the generated
values and performing global assertions. Hedgehog, and a few other PBT frameworks,
can measure the occurences of user-defined labels. A label in Hedgehog is a Text value,
declared with an associated condition. When Hedgehog runs the tests, it records the
percentage of tests in which the condition evaluates to True. After the test run is
complete, we’re presented with a listing of percentages per label.

We can even have Hedgehog fail the test unless a certain percentage is met. This
way, we can declare mininum coverage requirements for the generators used in our
property tests.

198

21.4. Testing Generators

21.4.1. Adding Coverage Checks
Let’s check that we generate values covering enough cases, based on the validation
rules in eq. 1 . In prop_invalid_age_fails, we use cover to ensure we generate
values outside the boundaries of valid ages. 5% is enough for each, but realistically
they could both get close to 50%.

prop_invalid_age_fails = property $ do
let genForm = SignupForm <$> validName <*> invalidAge
form <- forAll genForm
cover 5 "too young" (formAge form <= 0)
cover 5 "too old" (formAge form >= 151)
case validateSignup form of

Failure (InvalidAge{} :| []) -> pure ()
other -> do

annotateShow other
failure

Let’s run some tests again.

Figure 21.1.: Hedgehog fails

100% too young and 0% too old. The invalidAge generator is clearly not good enough.
Let’s have a look at its definition again:

199

21. Time Travelling and Fixing Bugs with Property-Based Testing - Oskar Wickström

invalidAge :: Gen Int
invalidAge = Gen.integral (Range.linear minBound 0)

We’re only generating invalid ages between the minimum bound of Int and 0. Let’s
fix that, by using Gen.choice and another generator for ages greater than 150:

invalidAge :: Gen Int
invalidAge = Gen.choice

[Gen.integral (Range.linear minBound 0)
, Gen.integral (Range.linear 151 maxBound)
]

Running tests again, the coverage check stops complaining. But there’s another prob-
lem:

Figure 21.2.: Hedgehog fails

OK, we have an actual bug. When the age is 151 or greater, the form is deemed valid.
It should cause a validation failure. Looking closer at the implementation, we see that
a pattern guard is missing the upper bound check:

validateAge age' | age' > 0 = Success (fromIntegral age')
| otherwise = Failure (pure (InvalidAge age'))

If we change it to age' > 0 && age' <= 150, and rerun the tests, they pass.

200

21.5. From Ages to Birth Dates

Figure 21.3.: Hedgehog passes

We’ve fixed the bug. Measuring and declaring requirements on coverage is a powerful
tool in Hedgehog. It gives us visibility into the generative tests we run, making it
practical to debug generators. It ensures our tests meet our coverage requirements,
even as implementation and tests evolve over time.

21.5. From Ages to Birth Dates
So far, our efforts have been successful. We’ve fixed real issues in both implementation
and tests. Management is pleased. They’re now asking us to modify the signup
system, and use our testing skills to ensure quality remains high.

Instead of entering their age, users will enter their birth date. Let’s suppose this
information is needed for something important, like sending out birthday gifts. The
form validation function must be modified to check, based on the supplied birth date
date, if the user signing up is old enough.

First, we import the Calendar module from the time package:

import Data.Time.Calendar

Next, we modify the SignupForm data type to carry a formBirthDate of type Date,
rather than an Int.

data SignupForm = SignupForm
{ formName :: Text
, formBirthDate :: Day
} deriving (Eq, Show)

And we make the corresponding change to the Signup data type:

data Signup = Signup
{ name :: Text
, birthDate :: Day
} deriving (Eq, Show)

We’ve also been requested to improve the validation errors. Instead of just InvalidAge,
we define three constructors for various invalid birthdates:

data SignupError
= NameTooShort Text
| NameTooLong Text

201

21. Time Travelling and Fixing Bugs with Property-Based Testing - Oskar Wickström

| TooYoung Day
| TooOld Day
| NotYetBorn Day
deriving (Eq, Show)

Finally, we need to modify the validateSignup function. Here, we’re faced with an
important question. How should the validation function obtain today’s date?

21.5.1. Keeping Things Deterministic
We could make validateSignup a non-deterministic action, which in Haskell would
have the following type signature:

validateSignup
:: SignupForm -> IO (Validation (NonEmpty SignupError) Signup)

Note the use of IO. It means we could retrieve the current time from the system clock,
and extract the Day value representing today’s date. But this approach has severe
drawbacks.

If validateSignup uses IO to retrieve the current date, we can’t test it with other
dates. What it there’s a bug that causes validation to behave incorrectly only on a
particular date? We’d have to run the tests on that specific date to trigger it. If we
introduce a bug, we want to know about it immediately. Not weeks, months, or even
years after the bug was introduced. Furthermore, if we find such a bug with our tests,
we can’t easily reproduce it on another date. We’d have to rewrite the implementation
code to trigger the bug again.

Instead of using IO, we’ll use a simply technique for keeping our function pure: take
all the information the function needs as arguments. In the case of validateSignup,
we’ll pass today’s date as the first argument:

validateSignup
:: Day -> SignupForm -> Validation (NonEmpty SignupError) Signup

Again, let’s not worry about the implementation just yet. We’ll focus on the tests.

21.5.2. Generating Dates
In order to test the new validateSignup implementation, we need to generate Day val-
ues. We’re going to use a few functions from a separate module called Data.Time.Gen,
previously written by some brilliant developer in our team. Let’s look at their type
signatures. The implementations are not very interesting.

The generator, day, generates a day within the given range:

day :: Range Day -> Gen Day

A day range is constructed with linearDay:

linearDay :: Day -> Day -> Range Day

Alternatively, we might use exponentialDay:

202

21.5. From Ages to Birth Dates

exponentialDay :: Day -> Day -> Range Day

The linearDay and exponentialDay range functions are analoguous to Hedgehog’s
linear and exponential ranges for integral numbers.

To use the generator functions from Data.Time.Gen, we first add an import, quali-
fied as Time:

import qualified Data.Time.Gen as Time

Next, we define a generator anyDay:

anyDay :: Gen Day
anyDay =

let low = fromGregorian 1900 1 1
high = fromGregorian 2100 12 31

in Time.day (Time.linearDay low high)

The date range [1900-01-01,2100-12-31] is arbitrary. We could pick any centuries we
like, provided the time package supports the range. But why not make it somewhat
realistic?

21.5.3. Rewriting Existing Properties
Now, it’s time to rewrite our existing property tests. Let’s begin with the one testing
that validating a form with all valid data succeeds:

prop_valid_signup_form_succeeds = property $ do
today <- forAll anyDay -- (1)
let genForm = SignupForm <$> validName <*> validBirthDate today
form <- forAll genForm -- (2)

case validateSignup today form of
Success{} -> pure ()
Failure failure' -> do

annotateShow failure'
failure

A few new things are going on here. We’re generating a date representing today (1),
and generating a form with a birth date based on today’s date (2). Generating today’s
date, we’re effectively time travelling and running the form validation on that date.
This means our validBirthDate generator must know which date is today, in order
to pick a valid birth date. We pass today’s date as a parameter, and generate a date
within the range of 18 to 150 years earlier:

validBirthDate :: Day -> Gen Day
validBirthDate today = do

n <- Gen.integral (Range.linear 18 150)
pure (n `yearsBefore` today)

We define the helper function yearsBefore in the test suite. It offsets a date backwards
in time by a given number of years:

203

21. Time Travelling and Fixing Bugs with Property-Based Testing - Oskar Wickström

yearsBefore :: Integer -> Day -> Day
yearsBefore years = addGregorianYearsClip (negate years)

The Data.Time.Calendar module exports the addGregorianYearsClip function. It
adds a number of years, clipping February 29th (leap days) to February 28th where
necessary.

Let’s run tests:

λ> check prop_valid_signup_form_succeeds
X<interactive> passed 100 tests.

Let’s move on to the next property, checking that invalid birth dates do not pass
validation. Here, we use the same pattern as before, generating today’s date, but use
invalidBirthDate instead:

prop_invalid_age_fails = property $ do
today <- forAll anyDay
form <- forAll (SignupForm <$> validName <*> invalidBirthDate today)

cover 5 "not yet born" (formBirthDate form > today)
cover 5 "too young" (formBirthDate form > 18 `yearsBefore` today)
cover 5 "too old" (formBirthDate form < 150 `yearsBefore` today)

case validateSignup today form of
Failure (TooYoung{} :| []) -> pure ()
Failure (NotYetBorn{} :| []) -> pure ()
Failure (TooOld{} :| []) -> pure ()
other -> do

annotateShow other
failure

Notice that we’ve also adjusted the coverage checks. There’s a new label, “not born
yet,” for birth dates in the future. Running tests, we see the label in action:

Figure 21.4.: Hedgehog results

Good coverage, all tests passing. We’re not quite done, though. There’s a particular
set of dates that we should be sure to cover: “today” dates and birth dates that are
close to, or exactly, 18 years apart.

204

21.6. A Single Validation Property

Within our current property test for invalid ages, we’re only sure that generated
birth dates include at least 5% too old, and at least 5% too young. We don’t know
how far away from the “18 years” validation boundary they are.

We could tweak our existing generators to produce values close to that boundary.
Given a date T, exactly 18 years before today’s date, then:

• invalidBirthDate would need to produce birth dates just after but not equal to
T

• validBirthDate would need to produce birth dates just before or equal to T

There’s another option, though. Instead of defining separate properties for valid and
invalid ages, we’ll use a single property for all cases. This way, we only need a single
generator.

21.6. A Single Validation Property
In Building on developers’ intuitions to create effective property-based tests, John
Hughes talks about “one property to rule them all.” Similarly, we’ll define a single
property prop_validates_age for birth date validation. We’ll base our new property
on prop_invalid_age_fails, but generalize to cover both positive and negative tests:

prop_validates_age = property $ do
today <- forAll anyDay
form <- forAll (SignupForm <$> validName <*> anyBirthDate today) -- (1)

let tooYoung = formBirthDate form > 18 `yearsBefore` today -- (2)
notYetBorn = formBirthDate form > today
tooOld = formBirthDate form < 150 `yearsBefore` today
oldEnough = formBirthDate form <= 18 `yearsBefore` today
exactly age = formBirthDate form == age `yearsBefore` today
closeTo age =

let diff' =
diffDays (formBirthDate form) (age `yearsBefore` today)

in abs diff' `elem` [0 .. 2]

cover 10 "too young" tooYoung
cover 1 "not yet born" notYetBorn
cover 1 "too old" tooOld

cover 20 "old enough" oldEnough -- (3)
cover 1 "exactly 18" (exactly 18)
cover 5 "close to 18" (closeTo 18)

case validateSignup today form of -- (4)
Failure (NotYetBorn{} :| []) | notYetBorn -> pure ()
Failure (TooYoung{} :| []) | tooYoung -> pure ()
Failure (TooOld{} :| []) | tooOld -> pure ()
Success{} | oldEnough -> pure ()
other -> annotateShow other >> failure

205

https://www.youtube.com/watch?v=NcJOiQlzlXQ

21. Time Travelling and Fixing Bugs with Property-Based Testing - Oskar Wickström

There are a few new things going on here:

1. Instead of generating exclusively invalid or valid birth dates, we’re now gener-
ating any birth date based on today’s date

2. The boolean expressions are used both in coverage checks and in asserting, so
we separate them in a let binding

3. We add three new labels for the valid cases

4. Finally, we assert on both valid and invalid cases, based on the same expressions
used in coverage checks

Note that our assertions are more specific than in prop_invalid_age_fails. The
failure cases only pass if the corresponding label expressions are true. The oldEnough
case covers all valid birth dates. Any result other than the four expected cases is
considered incorrect.

The anyBirthDate generator is based on today’s date:

anyBirthDate :: Day -> Gen Day
anyBirthDate today =

let -- (1)
inPast range = do

years <- Gen.integral range
pure (years `yearsBefore` today)

inFuture = do
years <- Gen.integral (Range.linear 1 5)
pure (addGregorianYearsRollOver years today)

daysAroundEighteenthYearsAgo = do
days <- Gen.integral (Range.linearFrom 0 (-2) 2)
pure (addDays days (18 `yearsBefore` today))

in -- (2)
Gen.frequency

[(5, inPast (Range.exponential 1 150))
, (1, inPast (Range.exponential 151 200))
, (2, inFuture)
, (2, daysAroundEighteenthYearsAgo)
]

We defines helper functions (1) for generating dates in the past, in the future, and
close to 18 years ago. Using those helper functions, we combine four generators, with
different date ranges, using a Gen.frequency distribution (1). The weights we use are
selected to give us a good coverage. Let’s run some tests (see figure 21.5)
Looks good! We’ve gone from testing positive and negative cases separately, to instead
have a single property covering all cases, based on a single generator. It’s now easier
to generate values close to the valid/invalid boundary of our SUT, i.e. around 18 years
from today’s date.

206

21.7. February 29th

Figure 21.5.: Hedgehog results

21.7. February 29th
For the fun of it, let’s run some more tests. We’ll crank it up to 20000 (see figure 21.6
Failure! Chaos! What’s going on here? Let’s examine the test case:

• Today’s date is 1956-02-29

• The birth date is 1938-03-01

• The validation function considers this valid (it returns a Success value)

• The test does considers this invalid (oldEnough is False)

This means that when the validation runs on a leap day, February 29th, and the
person would turn 18 years old the day after (on March 1st), the validation function
incorrectly considers the person old enough. We’ve found a bug.

21.7.1. Test Count and Coverage
Two things led us to find this bug:

1. Most importantly, that we generate today’s date and pass it as a parameter. Had
we used the actual date, retrieved with an IO action, we’d only be able to find
this bug every 1461 days. Pure functions are easier to test.

2. That we ran more tests than the default of 100. We might not have found this bug
until much later, when the generated dates happened to trigger this particular
bug. In fact, running 20000 tests does not always trigger the bug.

Our systems are often too complex to be tested exhaustively. Let’s use our form
validation as an example. Between 1900-01-01 and 2100-12-31 there are 73,413 days.
Selecting today’s date and the birth date from that range, we have more than five
billion combinations. Running that many Hedgehog tests in GHCi on my laptop
(based on some quick benchmarks) would take about a month. And this is a simple
pure validation function!

207

https://en.wikipedia.org/wiki/February_29#Born_on_February_29

21. Time Travelling and Fixing Bugs with Property-Based Testing - Oskar Wickström

Figure 21.6.: Hedgehog results

208

21.7. February 29th

To increase coverage, even if it’s not going to be exhaustive, we can increase the
number of tests we run. But how many should we run? On a continuous integration
server we might be able to run more than we do locally, but we still want to keep
a tight feedback loop. And what if our generators never produce inputs that reveal
existing bugs, regardless of the number of tests we run?

If we can’t test exhaustively, we need to ensure our generators cover interesting
combinations of inputs. We need to carefully design and measure our tests and gen-
erators, based on the edge cases we already know of, as well as the ones that we
discover over time. PBT without measuring coverage easily turns into a false sense of
security.

In the case of our leap day bug, we can catch it with fewer tests, and on every test
run. We need to make sure we cover leap days, used both as today’s date and as the
birth date, even with a low number of tests.

21.7.2. Covering Leap Days
To generate inputs that cover certain edge cases, we combine specific generators using
Gen.frequency:

(today, birthDate') <- forAll
(Gen.frequency

[(5, anyDayAndBirthDate) -- (1)

, (2, anyDayAndBirthDateAroundYearsAgo 18) -- (2)
, (2, anyDayAndBirthDateAroundYearsAgo 150)

, (1, leapDayAndBirthDateAroundYearsAgo 18) -- (3)
, (1, leapDayAndBirthDateAroundYearsAgo 150)

, (1, commonDayAndLeaplingBirthDateAroundYearsAgo 18) -- (4)
, (1, commonDayAndLeaplingBirthDateAroundYearsAgo 150)
]

)

Arbitrary values for today’s date and the birth date are drawn most frequently (1),
with a weight of 5. Next, with weights of 2, are generators for cases close to the
boundaries of the validation function (2). Finally, with weights of 1, are generators for
special cases involving leap days as today’s date (3) and leap days as birth date (4).

Note that these generators return pairs of dates. For most of these generators,
there’s a strong relation between today’s date and the birth date. For example, we
can’t first generate any today’s date, pass that into a generator function, and expect it
to always generate a leap day that occured 18 years ago. Such a generator would have
to first generate the leap day and then today’s date.

Let’s define the generators. The first one, anyDayAndBirthDate, picks any today’s
date within a wide date range. It also picks a birth date from an even wider date
range, resulting in some future birth dates and some ages above 150.

anyDayAndBirthDate :: Gen (Day, Day)
anyDayAndBirthDate = do

209

21. Time Travelling and Fixing Bugs with Property-Based Testing - Oskar Wickström

today <- Time.day
(Time.linearDay (fromGregorian 1900 1 1)

(fromGregorian 2020 12 31)
)

birthDate' <- Time.day
(Time.linearDay (fromGregorian 1850 1 1)

(fromGregorian 2050 12 31)
)

pure (today, birthDate')

Writing automated tests with a hard-coded year 2020 might scare you. Won’t these
tests fail when run in the future? No, not these tests. Remember, the validation
function is deterministic. We control today’s date. The actual date on which we run
these tests doesn’t matter.

Similar to the previous generator is anyDayAndBirthDateAroundYearsAgo. First, it
generates any date as today’s date (1). Next, it generates an arbitrary date approxi-
mately some number of years ago (2), where the number of years is an argument of
the generator.

anyDayAndBirthDateAroundYearsAgo :: Integer -> Gen (Day, Day)
anyDayAndBirthDateAroundYearsAgo years = do

today <- Time.day -- (1)
(Time.linearDay (fromGregorian 1900 1 1)

(fromGregorian 2020 12 31)
)

birthDate' <- addingApproxYears (negate years) today -- (2)
pure (today, birthDate')

The addingApproxYearsAgo generator adds a number of years to a date, and offsets it
between two days back and two days forward in time.

addingApproxYears :: Integer -> Day -> Gen Day
addingApproxYears years today = do

days <- Gen.integral (Range.linearFrom 0 (-2) 2)
pure (addDays days (addGregorianYearsRollOver years today))

The last two generators used in our frequency distribution cover leap day edge cases.
First, let’s define the leapDayAndBirthDateAroundYearsAgo generator. It generates a
leap day used as today’s date, and a birth date close to the given number of years ago.

leapDayAndBirthDateAroundYearsAgo :: Integer -> Gen (Day, Day)
leapDayAndBirthDateAroundYearsAgo years = do

today <- leapDay (Range.linear 1904 2020)
birthDate' <- addingApproxYears (negate years) today
pure (today, birthDate')

The leapDay generator uses mod to only generate years divisible by 4 and constructs
dates on February 29th. That alone isn’t enough to only generate valid leap days,
though. Years divisible by 100 but not by 400 are not leap years. To keep the generator
simple, we discard those years using the already existing isLeapDay predicate as a
filter.

210

21.7. February 29th

leapDay :: Range Integer -> Gen Day
leapDay yearRange = Gen.filter isLeapDay $ do

year <- Gen.integral yearRange
pure (fromGregorian (year - year `mod` 4) 2 29)

In general, we should be careful about discarding generated values using filter. If
we discard too much, Hedgehog gives up and complains loudly. In this particular
case, discarding a few generated dates is fine. Depending on the year range we pass
it, we might not discard any date.

Finally, we define the commonDayAndLeaplingBirthDateAroundYearsAgo generator.
It first generates a leap day used as the birth date, and then a today’s date approxi-
mately the given number of years after the birth date.

commonDayAndLeaplingBirthDateAroundYearsAgo :: Integer -> Gen (Day, Day)
commonDayAndLeaplingBirthDateAroundYearsAgo years = do

birthDate' <- leapDay (Range.linear 1904 2020)
today <- addingApproxYears years birthDate'
pure (today, birthDate')

That’s it for the generators. Now, how do we know that we’re covering the edge cases
well enough? With coverage checks!

cover 5 -- (1)
"close to 18, validated on common day"
(closeTo 18 && not (isLeapDay today))

cover 1
"close to 18, validated on leap day"
(closeTo 18 && isLeapDay today)

cover 5 -- (2)
"close to 150, validated on common day"
(closeTo 150 && not (isLeapDay today))

cover 1
"close to 150, validated on leap day"
(closeTo 150 && isLeapDay today)

cover 5 -- (3)
"exactly 18 today, born on common day"
(exactly 18 && not (isLeapDay birthDate'))

cover -- (4)
1
"legally 18 today, born on leap day"
(isLeapDay birthDate'
&& (addGregorianYearsRollOver 18 birthDate' == today)
)

We add new checks to the property test, checking that we hit both leap day and
regular day cases around the 18th birthday (1) and the 150th birthday (2). Notice that
we had similar checks before, but we were not discriminating between leap days and
common days.

211

21. Time Travelling and Fixing Bugs with Property-Based Testing - Oskar Wickström

Finally, we check the coverage of two leap day scenarios that can occur when a
person legally turns 18: a person born on a common day turning 18 on a leap day (3),
and a leapling turning 18 on a common day (4).

Running the modified property test, we get the leap day counter-example every
time, even with as few as a hundred tests. For example, we might see today’s date
being 1904-02-29 and the birth date being 1886-03-01. The validation function deems
the person old enough. Again, this is incorrect.

Now that we can quickly and reliably reproduce the failing example we are in a
great position to find the error. While we could use a fixed seed to reproduce the
particular failing case from the 20000 tests run, we are now more confident that the
property test would catch future leap day-related bugs, if we were to introduce new
ones. Digging into the implementation, we’ll find a boolean expression in a pattern
guard being the culprit:

birthDate' <= addGregorianYearsRollOver (-18) today

The use of addGregorianYearsRollOver together with adding a negative number of
years is the problem, rolling over to March 1st instead of clipping to February 28th.
Instead, we should use addGregorianYearsClip:

birthDate' <= addGregorianYearsClip (-18) today

Running 100 tests again, we see that they all pass, and that our coverage requirements
are met.

Figure 21.7.: Hedgehog results

21.8. Summary
In this tutorial, we started with a simple form validation function, checking the name
and age of a person signing up for an online service. We defined property tests for

212

https://en.wikipedia.org/wiki/February_29#Legal_status

21.8. Summary

positive and negative tests, learned how to test generators with coverage checks, and
found bugs in both the test suite and the implementation.

When requirements changed, we had to start working with dates. In order to keep
the validation function deterministic, we had to pass in today’s date. This enabled
us to simulate the validation running on any date, in combination with any reported
birth date, and trigger bugs that could otherwise take years to find, if ever. Had we
not made it deterministic, we would likely not have found the leap day bug later on.

To generate inputs that sufficiently test the validation function’s boundaries, we
rewrote our separate positive and negative properties into a single property, and used
coverage checks to ensure the quality of our generators. The trade-off between multi-
ple disjoint properties and a single more complicated property is hard.

With multiple properties, for example split between positive and negative tests,
both generators and assertions can be simpler and more targeted. On the other hand,
you run a risk of missing certain inputs. The set of properties might not cover the en-
tire space of inputs. Furthermore, performing coverage checks across multiple prop-
erties, using multiple targeted generators, can be problematic.

Ensuring coverage of generators in a single property is easier. You might even get
away with a naive generator, depending on the system you’re testing. If not, you’ll
need to combine more targeted generators, for example with weighted probabilities.
The drawback of using a single property is that the assertion not only becomes more
complicated, it’s also likely to mirror the implementation of the SUT. As we saw
with our single property testing the validation function, the assertion duplicated the
validation rules. You might be able to reuse the coverage expressions in assertions,
but still, there’s a strong coupling.

The choice between single or multiple properties comes down to how you want to
cover the boundaries of the SUT. Ultimately, both approaches can achieve the same
coverage, in different ways. They both suffer from the classic problem of a test suite
mirroring the system it’s testing.

Finally, running a larger number of tests, we found a bug related to leap days.
Again, without having made the validation function deterministic, this could’ve only
been found on a leap day. We further refined our generators to cover leap day cases,
and found the bug reliably with as few as 100 tests. The bug was easy to find and fix
when we had the inputs pointing directly towards it.

That’s it for this tutorial. Thanks for reading, and happy property testing and time
travelling!

213

21. Time Travelling and Fixing Bugs with Property-Based Testing - Oskar Wickström

214

22. Metamorphic Testing - Hillel
Wayne

William Yao: Another more general PBT post. The motivating problem: vanilla
PBT assumes it’s easy to generate inputs to our code. Sometimes it’s not. For
instance, what if you’re testing an image classifier neural net? You can’t randomly
generate images, because you don’t know what the output classification should be
for a random image. So we might only have a small set of manually-classified
test inputs. Metamorphic testing is a way of expanding our set of test inputs
programmatically by transforming the inputs we do have in some way and finding
relationships between the original result and the transformed result. For instance,
if we invert the color of one of our test images, our classifier should probably give
us the same result. If you make a property out of that, you now have more test
cases for free, and that catches more bugs.

Original article: [21]

Confession: I read the ACM Magazine. This makes me a dweeb even in programming
circles. One of the things I found in it is “Metamorphic Testing”. I’ve never heard of it,
and nobody I knew heard about it either. But the academic literature was shockingly
impressive: many incredibly successful case studies in wildly different fields. So why
haven’t we heard of it before? There’s only one article anywhere targeted at people
outside academia. Let’s make it two.

22.1. Background
Most written tests use oracles. That’s where you know the answer and are explicitly
checking that the computation gives you the answer.

def test_dist():
p1 = (0, 3)
p2 = (4, 0)
assert dist(p1, p2) == 5

In addition to being an oracle test, it’s also a manual test. Somebody sat down and
decided specific inputs and specific outputs. As systems get more complex, bespoke
manual tests become less and less useful. Each one only hits a single point in a larger
state space, and we want something that covers the state space.

This gives us generative testing: writing tests that hit a random set of the statespace.
The most popular style of generative testing is property based testing, or PBT. We find
a “property” of the function and then generate inputs and see if the outputs match
that property.

215

https://queue.acm.org/
https://medium.com/trustableai/testing-ai-with-metamorphic-testing-61d690001f5c

22. Metamorphic Testing - Hillel Wayne

def test_dist():
p1 = random_point()
p2 = random_point()
assert dist(p1, p2) >= 0

The advantage of PBT is that it gives more coverage. The downside is that we’ve lost
specificity. This is not an oracle test anymore! We don’t know what the answer should
be, and the function might be broken in a way that has the same property. We rely on
heuristics here.

One big problem with PBT is finding good properties. Most functions have simple,
general properties and complex, specific properties. General properties (see chapter
18) can be applied to a wider variety of functions but don’t give us much informa-
tion. More specific properties give more information, but are harder to find and only
apply to specific problem domains. If you had a function that determined whether
or not a graph is acyclic, what property tests would you write? Would they give you
confidence your function is right?

22.2. Motivation
Now take a more complex problem. Imagine we’re trying to write an English speech-
to-text (STT) processor. It takes a sound file and outputs the text. How would you
test it?

The simplest way is with a manual oracle. Read out a sentence and confirm it
gives you that sentence. But this isn’t nearly enough! The range of human speech is
enormous. It’d be better if we could instead test 1,000 or 10,000 different sound files.
Manually transcribing oracles is going to be way too expensive. This means we have
to use property-based testing instead.

But how do we generate the inputs? One way would be to create random strings,
then run them through a text-to-speech processor (TTS), and then check our STT gives
the same text. But, once again, this gives us a very limited range of human speech.
Will our TTS give us changes in tone, slurred words, strong accents? If we don’t
handle those, is our STT actually that useful? We’re better off sweeping for “wild”
text, such as from radio, podcasts, online videos.

Now we have a new problem. Using a TTS meant we started with the transcription.
We don’t have that with “wild” text, and we still don’t want to transcribe it ourselves.
We’re restricted to using properties instead. So what properties should we test? Some
simple ones might be “it doesn’t crash on any input” (good) or “It doesn’t turn acous-
tic music into words” (maybe?). These properties don’t really cover the “intent” of
the program, and don’t increase confidence all that much.

So we have two problems. One, we need a wide variety of speech inputs. Two, we
need a way to know make them into useful tests without spending hours manually
transcribing the speech into oracles.

22.3. Metamorphic Testing
That all treats the output in isolation. What if we embed it in a broader context? For
example, if a given soundclip transcibes to output out, then we should still get output
out if we:

216

22.4. The Case Studies

• Double the volume, or

• Raise the pitch, or

• Increase the tempo, or

• Add some background static, or

• Add some traffic noises, or

• Do any combination of the above.

All of these are “straightforward” transformations we can easily test. For example, for
the “traffic noises” test, we can take 10 traffic samples, overlay them on a soundclip,
and see that all 11 versions match. We can double or half the volume to turn 11

versions into 33 versions, and double the tempo to get 66 versions. Then we can then
scale this up to every soundclip in our database, which helps augment the space of
our inputs.

Having 66 versions to compare is useful enough. However, there’s something else
here: we don’t need to know what the output is. If all 66 transformations return out,
the test passes, and if any return something different, the test fails. At no point do
we need to check what out is. This is really, really big. It dramatically increases the
range we can test with very little human effort. We could, for example, download an
episode of This American Life, run the transformations, and see if they all match1. We
have useful tests without listening to the voice clip. We can now generate complex, deep
tests without the use of an oracle!

The two inputs, along with their outputs, are all connected to each other. This kind
of property spanning multiple inputs/outputs is called a metamorphic relation2. Test-
ing that leverages this is called metamorphic testing. For complex systems, it can be
easier to find interesting metamorphic relations than interesting single input/output
properties.

To be a bit more formal: if we have x and f(x), we can make some transformation
on x to get x2 and f(x2). In the STT case, we just checked f(x) = f(x2), but we
can use whatever relations we want between the two. You could also have MRs like
f(x2) > f(x) or “f(x2)/f(x) is an integer”. Similarly, we can also span more than
two inputs, using f(x) and f(x3). One example of this might be comparing search
engine results with no filters to engine results with one filter and two filters. Most of
the case studies I read only use two inputs, because even that is enough to find crazy
bugs.

22.4. The Case Studies
Speaking of case studies: How effective is MT in practice? It’s one thing to talk about
a technique in abstract, or provide toy examples. Reading case studies is useful for

1 Okay, there’s obvious problems here, because
the podcast might have music, samples in other
languages, etc. But the theory is sound: given we
have a way of acquiring speech samples, we can
use it as part of tests without having to manually
label it first.

2 The corresponding idea in specifications is hy-
perproperties, properties on sets of behaviors in-
stead of individual behaviors. Most HP research
is concerned with security hyperproperties. As I
understand it HPs are a superset of MRs.

217

22. Metamorphic Testing - Hillel Wayne

three reasons. First, it shows whether or not this actually works. Next, it shares some
potential gotchas if we try to use MT. Finally, it gives us ideas on how we can use
it. Any MR a case study uses is something we might be able to adapt for our own
purposes.

“Metamorphic Testing: A Review of Challenges and Opportunities” lists a lot of
studies, but they’re all academic papers. Here are a few of the most interesting ones.
Articles marked (pdf) are, unsurprisingly, PDFs.

METTLE: A Metamorphic Testing Approach To Validating Unsupervised Ma-
chine Learning Methods (pdf) Defines 11 different MRs for testing unsuper-
vised clustering, like “do we get the same result if we shuffle the inputs?” and
“do additional inputs at cluster boundaries belong to those clusters?” Different
models changed under dfferent relations. For example, about 5% of tested k-
means models had a mean clustering error of 20% under shuffling the order of
input points

DeepTest: Automated Testing of Deep-Neural-Network-driven Autonomous
Cars (pdf) Subject was car vision systems, MRs were things like “adding a
rain filter” or “slightly tilting the image”. Authors put sample results here:
Pretty much all the systems they tested collapsed under the MR changes.

Automated Testing of Graphics Shader Compilers (pdf) Injecting dead code
and runtime-constants into shaders made things in pictures disappear or turn
to noise. The researchers made a startup called GraphicsFuzz off their work,
which was acquired by Google and the site taken down.

Metamorphic Testing of RESTful Web APIs (pdf) Do you get the same items
when you change the pagination? What if you order them by date? A whole
bunch of errors in Spotify and Youtube in this paper.
An innovative approach for testing bioinformatics programs using metamor-
phic testing (pdf, but now not) Finding mistakes in bioinformatics stuff? Look
I barely understand bioinformatics, but it’s demonstrating how MR is useful in
specialist domains.

22.4.1. The Problem
Huh, they’re all PDFs.

Finding all of those took several hours. And that ties into the biggest drag on MT
adoption: All of the above are preprints, or first drafts of eventual academic papers.
When I dig into obscure techniques, I always ask “why is it obscure?” Sometimes
there’s an obvious reason, sometimes it’s a complex set of subtle reasons, sometimes
it’s just bad luck.

In the case of MT the problem is obvious. Almost all of the info is behind academic
paywalls. If you want to learn about MT, you either need journal access or spend
hours hunting down preprints3.

3 I had a second, refuted hypothesis: since a
lot of the major researchers are from China and
Hong Kong, maybe the technique was more well-
known in Mandarin-language programming com-

munities than English-language ones. Brian Ng
was kind enough to check for me and didn’t find
significant use.

218

http://www.cs.hku.hk/research/techreps/document/TR-2017-04.pdf
https://arxiv.org/abs/1807.10453
https://arxiv.org/abs/1807.10453
https://arxiv.org/abs/1708.08559
https://arxiv.org/abs/1708.08559
https://deeplearningtest.github.io/deepTest/
http://multicore.doc.ic.ac.uk/publications/oopsla-17.html
https://web.archive.org/web/20180710214938/http://www.graphicsfuzz.com/
http://www.lsi.us.es/~segura/files/papers/segura17-tse.pdf
https://github.com/spotify/web-api/issues/225
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-10-24
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-10-24
https://twitter.com/sindarknave

22.4. The Case Studies

22.4.2. Learning More
The inventor of MT is TY Chen. He’s also the driver of a lot of the research. Other
names are Zhi Quan Zhou and Sergio Segura, both of whom have put all of their
preprints online. Most of the research is by one of those.

The best starting resource are probably Metamorphic Testing: A Review of Chal-
lenges and Opportunities and A Survey on Metamorphic Testing. While this article
was about Metamorphic Testing, researchers have also been applying Metamorphic
Relationships in general to a wide variety of other disciplines, such as formal verifi-
cation and debugging. I have not researched those other uses in depth, but they’re
probs also worth looking into.

In terms of application, it should be theoretically possible to adapt most PBT li-
braries to check metamorphic properties. In fact the first example in the Quickcheck
tests a MR, and this essay on PBT implicitly uses an MR. In general it seems to me that
most PBT research focuses on how we effectively generate and shrink inputs, while
MT research is more focused on determining what we actually want to test. As such
they are probably complementary techniques.

Thanks to Brian Ng for help researching this.

22.4.3. PS: Request
It’s not actually that surprising that I never heard of this before. There’s a lot of really
interesting, useful techniques that never leave their tiny bubble. Learning about MT
was more luck than any action on my part.

If you know of anything you think deserves wider use, please email me.

219

https://www.swinburne.edu.au/science-engineering-technology/staff/profile/index.php?id=tychen
https://www.uow.edu.au/~zhiquan/
http://personal.us.es/sergiosegura/publications/
http://www.cs.hku.hk/research/techreps/document/TR-2017-04.pdf
http://www.cs.hku.hk/research/techreps/document/TR-2017-04.pdf
http://www.lsi.us.es/~segura/files/papers/segura16-tse.pdf
https://www.cs.tufts.edu/~nr/cs257/archive/john-hughes/quick.pdf
https://hypothesis.works/articles/testing-optimizers-with-hypothesis/
https://twitter.com/sindarknave
mailto:h@hillelwayne.com

22. Metamorphic Testing - Hillel Wayne

220

23. Unit testing effectful Haskell with
monad-mock

William Yao:
Introduces a way of doing more “traditional” unit testing, but focused more on

doing white-box testing, checking whether the code under test performed certain
operations, rather than just expecting on the output. Since this is Haskell, doing
that is a little bit more unusual.

Personally, I’m not a fan of writing tests like this because they feel like they
couple the tests to the implementation too tightly, and calcify design decisions too
quickly. Still, if there’s something that’s legitimately too difficult to sandbox for
your testing environment, it’s a useful pattern to be aware of.

Original article: [22]

Nearly eight months ago (see chapter 20), I wrote a blog post about unit testing
effectful Haskell code using a library called test-fixture. That library has served us
well, but it wasn’t as easy to use as I would have liked, and it worked better with
certain patterns than others. Since then, I’ve learned more about Haskell and more
about testing, and I’m pleased to announce that I am releasing an entirely new testing
library, monad-mock.

23.1. A first glance at monad-mock
The monad-mock library is, first and foremost, designed to be easy. It doesn’t ask
much from you, and it requires almost zero boilerplate.

The first step is to write an mtl-style interface that encodes an effect you want
to mock. For example, you might want to test some code that interacts with the
filesystem:

class Monad m => MonadFileSystem m where
readFile :: FilePath -> m String
writeFile :: FilePath -> String -> m ()

Now you just have to write your code as normal. For demonstration purposes, here’s
a function that defines copying a file in terms of readFile and writeFile:

copyFile :: MonadFileSystem m => FilePath -> FilePath -> m ()
copyFile a b = do

contents <- readFile a
writeFile b contents

Making this function work on the real filesystem is trivial, since we just need to define
an instance of MonadFileSystem for IO:

221

https://hackage.haskell.org/package/monad-mock

23. Unit testing effectful Haskell with monad-mock

instance MonadFileSystem IO where
readFile = Prelude.readFile
writeFile = Prelude.writeFile

But how do we test this? Well, we could run some real code in IO, which might not be
so bad for such a simple function, but this seems like a bad idea. For one thing, a bad
implementation of copyFile could do some pretty horrible things if it misbehaved
and decided to overwrite important files, and if you’re constantly running a test suite
whenever a file changes, it’s easy to imagine causing a lot of damage. Running tests
against the real filesystem also makes tests slower and harder to parallelize, and it
only gets much worse once you are doing more complex effects than interacting with
the filesystem.

Using monad-mock, we can test this function in just a couple of lines of code:

import Control.Exception (evaluate)
import Control.Monad.Mock
import Control.Monad.Mock.TH
import Data.Function ((&))
import Test.Hspec

makeMock "FileSystemAction" [ts| MonadFileSystem |]

spec = describe "copyFile" $
it "reads a file and writes its contents to another file" $

evaluate $ copyFile "foo.txt" "bar.txt"
& runMock [ReadFile "foo.txt" :-> "contents"

, WriteFile "bar.txt" "contents" :-> ()]

That’s it! The last two lines of the above snippet are the real interesting bits, which
specify the actions that are expected to be executed, and it couples them with their
results. You will find that if you tweak the list in any way, such as reordering the
actions, eliminating one or both of them, or adding an additional action to the end,
the test will fail. We could even turn this into a property-based test that generated
arbitrary file paths and file contents.

Admittedly, in this trivial example, the mock is a little silly, since converting this
into a property-based test would demonstrate how much we’ve basically just reimple-
mented the function in our test. However, once our function starts to do somewhat
more complicated things, then our tests become more meaningful. Here’s a similar
function that only copies a file if it is nonempty:

copyNonemptyFile :: MonadFileSystem m => FilePath -> FilePath -> m ()
copyNonemptyFile a b = do

contents <- readFile a
unless (null contents) $

writeFile b contents

This function has some logic which is very clearly not expressed in its type, and it
would be difficult to encode that information into the type in a safe way. Fortunately,
we can guarantee that it works by writing some tests:

222

23.2. Why unit test?

describe "copyNonemptyFile" $ do
it "copies a file with contents" $

evaluate $ copyNonemptyFile "foo.txt" "bar.txt"
& runMock [ReadFile "foo.txt" :-> "contents"

, WriteFile "bar.txt" "contents" :-> ()]

it "does nothing with an empty file" $
evaluate $ copyNonemptyFile "foo.txt" "bar.txt"

& runMock [ReadFile "foo.txt" :-> ""]

These tests are much more useful, and they have some actual value to them. Imagine
we had accidentally written when instead of unless, an easy typo to make. Our tests
would fail with some useful error messages:

1) copyNonemptyFile copies a file with contents
uncaught exception: runMockT: expected the following unexecuted actions to be run:

WriteFile "bar.txt" "contents"

2) copyNonemptyFile does nothing with an empty file
uncaught exception: runMockT: expected end of program, called writeFile

given action: WriteFile "bar.txt" ""

You now know enough to write tests with monad-mock.

23.2. Why unit test?
When the issue of testing is brought up in Haskell, it is often treated with a certain
distaste by a portion of the community. There are some points I’ve seen a number of
times, and though they take different forms, they boil down to two ideas:

1. “Haskell code does not need tests because the type system can prove correct-
ness.”

2. “Testing in Haskell is trivial because it is a pure language, and testing pure
functions is easy.”

I’ve been writing Haskell professionally for over a year now, and I can happily say that
there is some truth to both of those things! When my Haskell code typechecks, I feel
a confidence in it that I would not feel were I using a language with a less powerful
type system. Furthermore, Haskell encourages a “pure core, impure shell” approach
to system design that makes testing many things pleasant and straightforward, and it
completely eliminates the worry of subtle nondeterminism leaking into tests.

That said, Haskell is not a proof assistant, and its type system cannot guarantee
everything, especially for code that operates on the boundaries of what Haskell can
control. For much the same reason, I find that my pure code is the code I am least
likely to need to test, since it is also the code with the strongest type safety guarantees,
operating on types in my application’s domain. In contrast, the effectful code is often
what I find the most value in extensively testing, since it often contains the most subtle
complexity, and it is frequently difficult or even impossible to encode into types.

223

23. Unit testing effectful Haskell with monad-mock

Haskell has the power to provide remarkably strong correctness guarantees with a
surprisingly small amount of effort by using a combination of tests and types, using
each to accommodate for the other’s weaknesses and playing to each technique’s
strengths. Some code is test-driven, other code is type-driven. Most code ends up
being a mix of both. Testing is just a tool like any other, and it’s nice to feel confident
in one’s ability to effectively structure code in a decoupled, testable manner.

23.3. Why mock?
Even if you accept that testing is good, the question of whether or not to mock is a
subtler issue. To some people, “unit testing” is synonymous with mocks. This is
emphatically not true, and in fact, overly aggressive mocking is one of the best ways
to make your test suite completely worthless. The monad-mock approach to mocking
is a bit more principled than mocking in many dynamic, object-oriented languages,
but it comes with many of the same drawbacks: mocks couple your tests to your
implementation in ways that make them less valuable and less meaningful.

For the MonadFileSystem example above, I would actually probably not use a mock.
Instead, I would use a fake, in-memory filesystem implementation:

newtype FakeFileSystemT m a = FakeFileSystemT (StateT [(FilePath, String)] m a)
deriving (Functor, Applicative, Monad)

fakeFileSystemT :: Monad m => [(FilePath, String)]
-> FakeFileSystemT m a -> m (a, [(FilePath, String)])

fakeFileSystemT fs (FakeFileSystemT x) = second sort <$> runStateT x fs

instance Monad m => MonadFileSystem (FakeFileSystemT m) where
readFile path = FakeFileSystemT $ get >>= \fs -> lookup path fs &

maybe (fail $ "readFile: no such file ‘" ++ path ++ "’") return
writeFile path contents = FakeFileSystemT . modify $ \fs ->

(path, contents) : filter ((/= path) . fst) fs

The above snippet demonstrates how easy it is to define a MonadFileSystem imple-
mentation in terms of StateT, and while this may seem like a lot of boilerplate, it
really isn’t. You have to write a fake once per interface, and the above block is a mi-
nuscule twelve lines of code. With this technique, you are still able to write tests that
depend on the state of the filesystem before and after running the implementation,
but you decouple yourself from the precise process of getting there:

describe "copyNonemptyFile" $ do
it "copies a file with contents" $ do

let ((), fs) = runIdentity $ copyNonemptyFile "foo.txt" "bar.txt"
& fakeFileSystemT [("foo.txt", "contents")]

fs `shouldBe` [("bar.txt", "contents"), ("foo.txt", "contents")]

it "does nothing with an empty file" $ do
let ((), fs) = runIdentity $ copyNonemptyFile "foo.txt" "bar.txt"

& fakeFileSystemT [("foo.txt", "")]
fs `shouldBe` [("foo.txt", "")]

224

23.3. Why mock?

This is better than using a mock, and I would highly recommend doing it if you can!
However, a lot of real applications have to interact with services of much greater com-
plexity than an idealized filesystem, and creating that sort of in-memory fake is not
always practical. One such situation might be interacting with AWS CloudFormation,
for example:

class Monad m => MonadAWS m where
createStack :: StackName -> StackTemplate -> m (Either AWSError StackId)
listStacks :: m (Either AWSError [StackSummaries])
describeStack :: StackId -> m (Either AWSError StackInfo)
-- and so on...

AWS is a very complex system, and it can do dozens of different things (and fail in
dozens of different ways) based on an equally complex set of inputs. For example, in
the above API, createStack needs to parse its template, which can be YAML or JSON,
in order to determine which of many possible errors and behaviors can be produced,
both on the initial call and on subsequent ones.

Creating a fake implementation of AWS is hardly feasible, and this is where a mock
can be useful. By simply writing makeMock "AWSAction" [ts| MonadAWS |], we can
test functions that interact with AWS in a pure way without necessarily needing to
replicate all of its complexity.

23.3.1. Isolating mocks
Of course, tests that use mocks provide less value than tests that use “smarter” fakes,
since they are far more tightly coupled to the implementation, and it’s dramatically
more likely that you will need to change the tests when you change the logic. To
avoid this, it can be helpful to create multiple interfaces to the same thing: a high-
level interface and a low-level one. If our above MonadAWS is a low-level interface, we
could create a high-level counterpart that does precisely what our application needs:

class Monad m => MonadDeploy m where
executeDeployment :: Deployment -> m (Either DeployError ())

When running our application “for real”, we would use MonadAWS to implement
MonadDeploy:

executeDeploymentImpl :: MonadAWS m => Deployment -> m (Either DeployError ())
executeDeploymentImpl = ...

The nice thing about this is we can actually test executeDeploymentImpl using a
MonadAWS mock, so we can still have unit test coverage of the code on the bound-
aries of our system! Additionally, by containing the mock to a single place, we can
test the rest of our code using a smarter fake implementation of MonadDeploy, help-
ing to decouple our code from AWS’s complex API and improve the reliability and
usefulness of our test suite.

They key point here is that mocking is just a small piece of the larger testing puzzle
in any language, and that is just as true in Haskell. An overemphasis on mocking is
an easy way to end up with a test suite that feels useless, probably because it is. Use
mocks as a technique to insulate your application from the complexity in others’ APIs,
then use more domain-specific testing techniques and type-level assertions to ensure
the correctness of your logic.

225

23. Unit testing effectful Haskell with monad-mock

23.4. How monad-mock works
If you’ve read this far and are convinced that monad-mock is useful, you may safely
stop reading now. However, if you are interested in the details of what it actually
does and what makes it tick, the rest of this blog post is going to focus on how the
implementation works and how it compares to other techniques.

The centerpiece of monad-mock’s API is its monad transformer, MockT, which is a
type constructor that accepts three types:

newtype MockT (f :: * -> *) (m :: * -> *) (a :: *)

The m and a type variables obviously correspond to the usual monad transformer
arguments, which represent the underlying monad and the result of the monadic
computation, respectively. The f variable is more interesting, since it’s what makes
MockT work at all, and it isn’t even a type: it’s a type constructor with kind * -> *.
What does it mean?

Looking at the type signature of runMockT gives us a little bit more information
about what that f actually represents:

runMockT :: (Action f, Monad m) => [WithResult f] -> MockT f m a -> m a

This type signature provides two pieces of key information:

1. The f parameter is constrained by the Action f constraint.

2. Running a mocked computation requires supplying a list of WithResult f val-
ues. This list corresponds to the list of expectations provided to runMock in
earlier examples.

To understand both of these things, it helps to examine the definition of an actual
datatype that can have an Action instance. For the filesystem example, the action
datatype looks like this:

data FileSystemAction r where
ReadFile :: FilePath -> FileSystemAction String
WriteFile :: FilePath -> String -> FileSystemAction ()

Notice how each constructor clearly corresponds to one of the methods of MonadFileSystem,
with a type to match. Now the purpose of the type provided to the FileSystemAction
constructor (in this case r) should hopefully become clear: it represents the type of
the value produced by each method. Also note that the type is completely phantom—it
does not appear in negative position in any of the constructors.

With this in mind, we can take a look at the definition of WithResult:

data WithResult f where
(:->) :: f r -> r -> WithResult f

This is what defines the (:->) constructor from earlier in the blog post, and you can
see that it effectively just represents a tuple of an action and a value of its associated
result. It’s completely type-safe, since it ensures the result matches the type argument
to the action.

Finally, this brings us to the Action class, which is not complex, but is unfortunately
necessary:

226

23.4. How monad-mock works

class Action f where
eqAction :: f a -> f b -> Maybe (a :~: b)
showAction :: f a -> String

Notice that these methods are effectively just (==) and show, lifted to type constructors
of kind * -> *. One significant difference is that eqAction produces Maybe (a :~:
b) instead of Bool, where (:~:) is from Data.Type.Equality. This is a type equality
witness, which means a successful equality between two values allows the compiler
to be sure that the two types are equal. This is necessary for the implementation of
runMockT due to the phantom type in actions—in order to convince GHC that we can
properly return the result of a mocked action, we need to assure it that the value we’re
going to return is actually of the proper type.

Implementing this typeclass is not particularly burdensome, but it’s entirely boiler-
plate, so even if you want to define your own action type (that is, you don’t want to
use makeMock), you can use the deriveAction function from Control.Monad.Mock.TH
to derive an Action instance on an existing datatype.

23.4.1. Connecting the mock to its class
Now that we have an action with which to mock a class, we need to actually define an
instance of that class for MockT. For this process, monad-mock provides a mockAction
function with the following type:

mockAction :: (Action f, Monad m) => String -> f r -> MockT f m r

This function accepts two arguments: the name of the method being mocked and
the action that represents the current call. This is easier to illustrate with an actual
instance of MonadFileSystem using MockT and our FileSystemAction type:

instance Monad m => MonadFileSystem (MockT FileSystemAction m) where
readFile a = mockAction "readFile" (ReadFile a)
writeFile a b = mockAction "writeFile" (WriteFile a b)

This allows readFile and writeFile to defer to the mock, and providing the names
of the functions as strings helps monad-mock to produce useful error messages upon
failure. Internally, MockT is a StateT that keeps track of a list of WithResult f values
as its state. Each call to the mock checks the action against the internal list of calls,
and if they match, it returns the associated result. Otherwise, it throws an exception.

This scheme is simple, but it seems to work remarkably well. There are some
obvious enhancements that will probably be eventually necessary, like allowing action
results that run in the underlying monad m in order to support things like throwError
from MonadError, but so far, it hasn’t been necessary for what we’ve been using it
for. Certain tricky signatures defy this simple technique, such as signatures where a
monadic action appears in a negative position (that is, the signatures you need things
like monad-control or monad-unlift for), but we’ve found that most of our effects
don’t have any reason to include such signatures.

227

https://hackage.haskell.org/package/monad-control
https://hackage.haskell.org/package/monad-unlift

23. Unit testing effectful Haskell with monad-mock

23.5. A brief comparison with free(r) monads
At this point, astute readers will likely be thinking about free monads, which parts of
this technique greatly resemble. The representation of actions as GADTs is especially
similar to freer, which does something extremely similar. Indeed, you can think of
this technique as something that combines a freer-style representation with mtl-style
classes. Given that freer already does this, you might ask yourself what the point is.

If you are already sold on free monads, monad-mock may very well be uninterest-
ing to you. From the perspective of theoretical novelty, monad-mock is not anything
new or different. However, there are a variety of practical reasons to prefer mtl over
free, and it’s nice to see how easy it is to enjoy the testing benefits of free without too
much extra effort.

An in-depth comparison between mtl and free is well outside the scope of this
blog post. However, the key point is that this technique only affects test code, so the
real runtime implementation will not be affected in any way. This means you can
take advantage of the performance benefits and ecosystem support of mtl without
sacrificing simple, expressive testing.

23.6. Conclusion
To cap things off, I want to emphasize monad-mock’s role as a single part of a larger
initiative we’ve been making for the better part of the past eighteen months. Haskell
is a language with ever-evolving techniques and style, and it’s sometimes dizzying to
figure out how to use all the pieces together to develop robust, maintainable applica-
tions. While monad-mock might not be anything drastically different from existing
testing techniques, my hope is that it can provide an opinionated mechanism to make
testing easy and accessible, even for complex interactions with other services and
systems.

I’ve made an effort to make it abundantly clear in this blog post that monad-mock is
not a silver bullet to testing, and in fact, I would prefer other techniques for ensuring
correctness whenever possible. Even so, mocking is a nice tool to have in your toolbox,
and it’s a good fallback to get even the worst APIs under test coverage.

If you want to try out monad-mock for yourself, take a look at the documentation
on Hackage and start playing around! It’s still early software, so it’s not the most
proven or featureful, but we’ve managed to get mileage out of it already, all the same.
If you find any problems, have a use case it does not support, or just find something
about it unclear, please do not hesitate to open an issue on the GitHub repository—we
obviously can’t fix issues we don’t know about.

Thanks as always to the many people who have contributed ideas that have shaped
my philosophy and approach to testing and have helped provide the tools that make
this library work. Happy testing!

228

https://hackage.haskell.org/package/freer
https://hackage.haskell.org/package/monad-mock
https://hackage.haskell.org/package/monad-mock
https://github.com/cjdev/monad-mock

Bibliography
[1] William Yao: A list of Haskell articles on good design, good testing – https://

williamyaoh.com/posts/2019-11-24-design-and-testing-articles.html. Ac-
cessed: 27.11.2019. 1

[2] Matt Parsons: Type Safety Back and Forth – https://www.parsonsmatt.org/
2017/10/11/type_safety_back_and_forth.html. Accessed: 27.11.2019. 3

[3] Matt Parsons: Keep your types small... – https://www.parsonsmatt.org/2018/
10/02/small_types.html. Accessed: 27.11.2019. 4

[4] David Luposchainsky: Algebraic Blindness – https://github.com/quchen/
articles/blob/master/algebraic-blindness.md. Accessed: 27.11.2019. 5

[5] Alexis King: Parse, don’t validate – https://lexi-lambda.github.io/blog/
2019/11/05/parse-don-t-validate/. Accessed: 27.11.2019. 6

[6] Jasper van der Jeugt: On Ad-hoc Datatypes – https://jaspervdj.be/posts/
2016-05-11-ad-hoc-datatypes.html. Accessed: 27.11.2019. 7

[7] Tom Ellis: Good design and type safety in Yahtzee – http://h2.jaguarpaw.co.
uk/posts/good-design-and-type-safety-in-yahtzee/. Accessed: 27.11.2019. 8

[8] Tom Ellis: Using our brain less in refactoring Yahtzee – http://h2.jaguarpaw.
co.uk/posts/using-brain-less-refactoring-yahtzee/. Accessed: 27.11.2019.
9

[9] Michael Snoyman: Weakly Typed Haskell – https://www.fpcomplete.com/blog/
2018/01/weakly-typed-haskell. Accessed: 27.11.2019. 10

[10] Matt Parsons: The Trouble with Typed Errors – https://www.parsonsmatt.org/
2018/11/03/trouble_with_typed_errors.html. Accessed: 27.11.2019. 11

[11] Sandy Maguire: Type-Directed Code Generation – https://
reasonablypolymorphic.com/blog/type-directed-code-generation/. Ac-
cessed: 27.11.2019. 12

[12] Jasper van der Jeugt: Practical testing in Haskell – https://jaspervdj.be/
posts/2015-03-13-practical-testing-in-haskell.html. Accessed: 27.11.2019.
13

[13] Oskar Wickström: Property-Based Testing in a Screencast Editor:
Introduction – https://wickstrom.tech/programming/2019/03/02/
property-based-testing-in-a-screencast-editor-introduction.html.
Accessed: 27.11.2019. 14

229

https://williamyaoh.com/posts/2019-11-24-design-and-testing-articles.html
https://williamyaoh.com/posts/2019-11-24-design-and-testing-articles.html
https://www.parsonsmatt.org/2017/10/11/type_safety_back_and_forth.html
https://www.parsonsmatt.org/2017/10/11/type_safety_back_and_forth.html
https://www.parsonsmatt.org/2018/10/02/small_types.html
https://www.parsonsmatt.org/2018/10/02/small_types.html
https://github.com/quchen/articles/blob/master/algebraic-blindness.md
https://github.com/quchen/articles/blob/master/algebraic-blindness.md
https://lexi-lambda.github.io/blog/2019/11/05/parse-don-t-validate/
https://lexi-lambda.github.io/blog/2019/11/05/parse-don-t-validate/
https://jaspervdj.be/posts/2016-05-11-ad-hoc-datatypes.html
https://jaspervdj.be/posts/2016-05-11-ad-hoc-datatypes.html
http://h2.jaguarpaw.co.uk/posts/good-design-and-type-safety-in-yahtzee/
http://h2.jaguarpaw.co.uk/posts/good-design-and-type-safety-in-yahtzee/
http://h2.jaguarpaw.co.uk/posts/using-brain-less-refactoring-yahtzee/
http://h2.jaguarpaw.co.uk/posts/using-brain-less-refactoring-yahtzee/
https://www.fpcomplete.com/blog/2018/01/weakly-typed-haskell
https://www.fpcomplete.com/blog/2018/01/weakly-typed-haskell
https://www.parsonsmatt.org/2018/11/03/trouble_with_typed_errors.html
https://www.parsonsmatt.org/2018/11/03/trouble_with_typed_errors.html
https://reasonablypolymorphic.com/blog/type-directed-code-generation/
https://reasonablypolymorphic.com/blog/type-directed-code-generation/
https://jaspervdj.be/posts/2015-03-13-practical-testing-in-haskell.html
https://jaspervdj.be/posts/2015-03-13-practical-testing-in-haskell.html
https://wickstrom.tech/programming/2019/03/02/property-based-testing-in-a-screencast-editor-introduction.html
https://wickstrom.tech/programming/2019/03/02/property-based-testing-in-a-screencast-editor-introduction.html

Bibliography

[14] Oskar Wickström: Property-Based Testing in a Screencast Editor, Case Study
1: Timeline Flattening – https://wickstrom.tech/programming/2019/03/24/
property-based-testing-in-a-screencast-editor-case-study-1.html. Ac-
cessed: 27.11.2019. 15

[15] Oskar Wickström: Property-Based Testing in a Screencast Editor, Case Study 2:
Video Scene Classification – https://wickstrom.tech/programming/2019/04/
17/property-based-testing-in-a-screencast-editor-case-study-2.html.
Accessed: 27.11.2019. 16

[16] Oskar Wickström: Property-Based Testing in a Screencast Editor, Case Study
3: Integration Testing – https://wickstrom.tech/programming/2019/06/02/
property-based-testing-in-a-screencast-editor-case-study-3.html. Ac-
cessed: 27.11.2019. 17

[17] Scott Wlaschin: Choosing properties for property-based testing – https:
//fsharpforfunandprofit.com/posts/property-based-testing-2/. Accessed:
27.11.2019. 18

[18] Hillel Wayne: Findin Property Tests – https://www.hillelwayne.com/post/
contract-examples/. Accessed: 27.11.2019. 19

[19] Alexis King: Using types to unit-test in Haskell – https://lexi-lambda.
github.io/blog/2016/10/03/using-types-to-unit-test-in-haskell/. Ac-
cessed: 27.11.2019. 20

[20] Oskar Wickström: Time Travelling and Fixing Bugs with Property-
Based Testing – https://wickstrom.tech/programming/2019/11/17/
time-travelling-and-fixing-bugs-with-property-based-testing.html.
Accessed: 27.11.2019. 21

[21] Hillel Wayne: Metamorphic Testing – https://www.hillelwayne.com/post/
metamorphic-testing/. Accessed: 27.11.2019. 22

[22] Alexis King: Unit testing effectful Haskell with monad-
mock – https://lexi-lambda.github.io/blog/2017/06/29/
unit-testing-effectful-haskell-with-monad-mock/. 23

230

https://wickstrom.tech/programming/2019/03/24/property-based-testing-in-a-screencast-editor-case-study-1.html
https://wickstrom.tech/programming/2019/03/24/property-based-testing-in-a-screencast-editor-case-study-1.html
https://wickstrom.tech/programming/2019/04/17/property-based-testing-in-a-screencast-editor-case-study-2.html
https://wickstrom.tech/programming/2019/04/17/property-based-testing-in-a-screencast-editor-case-study-2.html
https://wickstrom.tech/programming/2019/06/02/property-based-testing-in-a-screencast-editor-case-study-3.html
https://wickstrom.tech/programming/2019/06/02/property-based-testing-in-a-screencast-editor-case-study-3.html
https://fsharpforfunandprofit.com/posts/property-based-testing-2/
https://fsharpforfunandprofit.com/posts/property-based-testing-2/
https://www.hillelwayne.com/post/contract-examples/
https://www.hillelwayne.com/post/contract-examples/
https://lexi-lambda.github.io/blog/2016/10/03/using-types-to-unit-test-in-haskell/
https://lexi-lambda.github.io/blog/2016/10/03/using-types-to-unit-test-in-haskell/
https://wickstrom.tech/programming/2019/11/17/time-travelling-and-fixing-bugs-with-property-based-testing.html
https://wickstrom.tech/programming/2019/11/17/time-travelling-and-fixing-bugs-with-property-based-testing.html
https://www.hillelwayne.com/post/metamorphic-testing/
https://www.hillelwayne.com/post/metamorphic-testing/
https://lexi-lambda.github.io/blog/2017/06/29/unit-testing-effectful-haskell-with-monad-mock/
https://lexi-lambda.github.io/blog/2017/06/29/unit-testing-effectful-haskell-with-monad-mock/

	1 Introduction
	2 Introduction by William Yao
	I Posts on designing and structuring code
	3 Type Safety Back and Forth - Matt Parsons
	3.1 The Ripple Effect
	3.2 Ask Only What You Need

	4 Keep your types small…and your bugs smaller - Matt Parsons
	4.1 Expansion and Restriction
	4.2 Constraints Liberate
	4.3 Restrict the Range
	4.4 A perfect fit

	5 Algebraic blindness - David Luposchainsky
	5.1 Abstract
	5.2 Boolean blindness
	5.3 Haskell to the rescue
	5.4 The petting zoo of blindness
	5.5 Algebraic blindness
	5.6 Haskell to the rescue, for real this time
	5.7 Drawbacks
	5.8 Conclusion

	6 Parse, don't validate - Alexis King
	6.1 The essence of type-driven design
	6.1.1 The realm of possibility

	6.2 Turning partial functions total
	6.2.1 Managing expectations
	6.2.2 Paying it forward

	6.3 The power of parsing
	6.4 The danger of validation
	6.5 Parsing, not validating, in practice
	6.6 Recap, reflection, and related reading

	7 On Ad-hoc Datatypes - Jasper Van der Jeugt
	8 Good design and type safety in Yahtzee - Tom Ellis
	8.1 Original implementation
	8.2 Explain the invariant
	8.3 Avoid catch-all pattern
	8.4 Add another invariant check
	8.5 Add pop function
	8.6 Indicate that a value is unused
	8.7 Prepare to rearrange arguments
	8.8 Rearrange arguments
	8.9 Rearrange arguments further
	8.10 Avoid unpacking tuple
	8.11 We don't use the Integer. Make this structural.
	8.12 Introduce a type synonym
	8.13 Make illegal states unrepresentable
	8.14 Use uncons
	8.15 Don't need uncons
	8.16 Use do notation
	8.17 Prepare for mapM
	8.18 Use mapM
	8.19 Avoid boolean blindness
	8.20 Keep the better version

	9 Using our brain less in refactoring Yahtzee - Tom Ellis
	9.1 The starting point
	9.2 Use do-notation
	9.3 Observe that both branches pair a list with n-1
	9.4 Lift fmap outside do
	9.5 Combine duplicated functions at top level
	9.6 Split function body into separate function
	9.7 Substitute definition of allRolls
	9.8 Remove redundant pairing
	9.9 Generalise type of allRollsBody
	9.10 Remove unused argument
	9.11 Conclusion

	10 Weakly Typed Haskell - Michael Snoyman
	10.1 A strongly typed language?
	10.2 Quarantining weak typing
	10.3 Discipline and best practices

	11 The Trouble with Typed Errors - Matt Parsons
	11.1 Monolithic error types are bad
	11.2 Boilerplate be gone!
	11.3 Generics to the rescue!
	11.4 Mostly?

	12 Type-Directed Code Generation - Sandy Maguire
	12.1 Context
	12.2 Generating Metadata
	12.3 The Client Side
	12.4 The Server Side
	12.4.1 Method Discovery
	12.4.2 Typing the Server
	12.4.3 Implementing the Server

	12.5 Client-side Usability
	12.5.1 Removing Proxies
	12.5.2 Better ``Wrong Streaming Variety'' Errors
	12.5.3 Better ``Wrong Method'' Errors

	12.6 Conclusion

	II Posts on testing
	13 Practical testing in Haskell - Jasper van der Jeugt
	13.1 Introduction
	13.2 Test frameworks in Haskell
	13.3 A module structure for tests
	13.4 What to test
	13.5 Simple HUnit tests
	13.6 Simple QuickCheck tests
	13.7 Tricks for writing Arbitrary instances
	13.7.1 The Action trick
	13.7.2 The SmallInt trick

	13.8 Monadic QuickCheck
	13.9 Tying everything up

	14 Property-Based Testing in a Screencast Editor: Introduction - Oskar Wickström
	14.1 Komposition
	14.2 Property-Based Testing
	14.3 Properties of the Ugly Parts
	14.4 Designing for Testability
	14.5 Patterns for Properties
	14.6 Testing Case Studies
	14.7 Credits

	15 Case Study 1: Timeline Flattening - Oskar Wickström
	15.1 The Hierarchical Timeline
	15.1.1 Video and Audio in Parallels
	15.1.2 Gaps
	15.1.3 Sequences
	15.1.4 The Timeline

	15.2 Timeline Flattening
	15.3 Property Tests
	15.3.1 Property: Duration Equality
	15.3.2 Property: Clip Occurence

	15.4 Still Frames Used
	15.4.1 Property: Single Initial Video Clip
	15.4.2 Property: Ending with a Video Clip
	15.4.3 Property: Ending with an Implicit Video Gap

	15.5 Properties: Flattening Equivalences
	15.6 Missing Properties
	15.7 A Missing Feature
	15.8 Obligatory Cliff-Hanger

	16 Case Study 2: Video Scene Classification - Oskar Wickström
	16.1 Classifying Scenes in Imported Video
	16.2 Manually Testing the Classifier
	16.3 Video Classification Properties
	16.4 Testing Still Segment Minimum Length
	16.5 Testing Moving Segment Time Spans
	16.6 Bugs! Bugs everywhere!
	16.7 Summary
	16.8 Coming Up

	17 Case Study 3: Integration Testing - Oskar Wickström
	17.1 A History of Two Stacks
	17.1.1 Performing Actions
	17.1.2 Undoing Actions
	17.1.3 Redoing Actions
	17.1.4 Dealing With Performance Problems

	17.2 Refactoring with Property-Based Integration Tests
	17.2.1 Undo/Redo Tests
	17.2.2 All Tests Passing, Everything Works

	17.3 Why Test With Properties?

	18 Choosing properties for property-based testing - Scott Wlaschin
	18.1 Categories for properties
	18.1.1 ``Different paths, same destination''
	18.1.2 ``There and back again''
	18.1.3 ``Some things never change''
	18.1.4 ``The more things change, the more they stay the same''
	18.1.5 ``Solve a smaller problem first''
	18.1.6 ``Hard to prove, easy to verify''
	18.1.7 ``The test oracle''

	18.2 Putting the categories to work with some real examples
	18.2.1 ``Different paths, same destination'' applied to a list sort

	18.3 ``There and back again''
	18.4 ``Hard to prove, easy to verify''
	18.5 ``Some things never change''
	18.5.1 Sort invariant - 2nd attempt
	18.5.2 Sort invariant - 3rd attempt

	18.6 Sidebar: Combining properties
	18.7 ``Solving a smaller problem''
	18.8 Is the EDFH really a problem?
	18.9 ``The more things change, the more they stay the same''
	18.10 ``Two heads are better than one''
	18.11 Generating Roman numerals in two different ways
	18.12 ``Model-based'' testing
	18.13 Interlude: A game based on finding properties
	18.14 Applying the categories one more time
	18.14.1 Properties for an immutable Dollar
	18.14.2 Dollar properties – version 3
	18.14.3 Dollar properties – version 4
	18.14.4 Logging the function parameter

	18.15 TDD vs. property-based testing
	18.16 The end, at last

	19 Finding Property Tests - Hillel Wayne
	19.1 Contract-wise
	19.1.1 Types
	19.1.2 First element
	19.1.3 The dang definition

	19.2 Property-wise
	19.2.1 Preserving Transformation
	19.2.2 Controlled Transformation
	19.2.3 Oracle Generators

	19.3 Limitations
	19.3.1 Summary

	20 Using types to unit-test in Haskell - Alexis King
	20.1 First, an aside on testing philosophy
	20.2 Drawing seams using types
	20.2.1 Making implicit interfaces explicit

	20.3 Testing with typeclasses: an initial attempt
	20.3.1 Testing side-effectful code

	20.4 Creating first-class typeclass instances
	20.4.1 Creating an instance proxy

	20.5 Removing the boilerplate using test-fixture
	20.6 Conclusion, credits, and similar techniques

	21 Time Travelling and Fixing Bugs with Property-Based Testing - Oskar Wickström
	21.1 System Under Test: User Signup Validation
	21.1.1 The Validation Type

	21.2 Validation Property Tests
	21.2.1 A Positive Property Test
	21.2.2 Negative Property Tests
	21.2.3 Accumulating All Failures

	21.3 The Value of a Property
	21.4 Testing Generators
	21.4.1 Adding Coverage Checks

	21.5 From Ages to Birth Dates
	21.5.1 Keeping Things Deterministic
	21.5.2 Generating Dates
	21.5.3 Rewriting Existing Properties

	21.6 A Single Validation Property
	21.7 February 29th
	21.7.1 Test Count and Coverage
	21.7.2 Covering Leap Days

	21.8 Summary

	22 Metamorphic Testing - Hillel Wayne
	22.1 Background
	22.2 Motivation
	22.3 Metamorphic Testing
	22.4 The Case Studies
	22.4.1 The Problem
	22.4.2 Learning More
	22.4.3 PS: Request

	23 Unit testing effectful Haskell with monad-mock
	23.1 A first glance at monad-mock
	23.2 Why unit test?
	23.3 Why mock?
	23.3.1 Isolating mocks

	23.4 How monad-mock works
	23.4.1 Connecting the mock to its class

	23.5 A brief comparison with free(r) monads
	23.6 Conclusion

	Bibliography

